Sampling low-dimensional Markovian dynamics for learning certified reduced models from data

Wayne Isaac Tan Uy and Benjamin Peherstorfer Courant Institute of Mathematical Sciences, New York University

February 2020

### Learning dynamical-system models from data



#### Learn low-dimensional model from data of dynamical system

- Interpretable
- System & control theory

- Fast predictions
- Guarantees for finite data

### Recovering reduced models from data



#### Learn low-dimensional model from data of dynamical system

- Interpretable
- System & control theory

- Fast predictions
- Guarantees for finite data

#### Learn reduced model from trajectories of high-dim. system

- Recover exactly and pre-asymptotically reduced models from data
- Then build on rich theory of model reduction to establish error control

### Intro: Polynomial nonlinear terms

Models with polynomial nonlinear terms

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}(t;\boldsymbol{\mu}) = & \boldsymbol{f}(\boldsymbol{x}(t;\boldsymbol{\mu}),\boldsymbol{u}(t);\boldsymbol{\mu}) \\ = & \sum_{i=1}^{\ell} \boldsymbol{A}_i(\boldsymbol{\mu}) \boldsymbol{x}^i(t;\boldsymbol{\mu}) + \boldsymbol{B}(\boldsymbol{\mu}) \boldsymbol{u}(t) \end{aligned}$$

- Polynomial degree  $\ell \in \mathbb{N}$
- Kronecker product  $m{x}^i(t;m{\mu}) = \bigotimes_{j=1}^i m{x}(t;m{\mu})$
- Operators  $oldsymbol{A}_i(oldsymbol{\mu}) \in \mathbb{R}^{N imes N^i}$  for  $i=1,\ldots,\ell$
- Input operator  $oldsymbol{B}(oldsymbol{\mu}) \in \mathbb{R}^{N imes p}$

### Lifting and transformations

- Lift general nonlinear systems to quadratic-bilinear ones [Gu, 2011], [Benner, Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox, 2019], [Qian, Kramer, P., Willcox, 2019]
- Koopman lifts nonlinear systems to infinite linear systems [Rowley et al, 2009], [Schmid, 2010]

# Intro: Beyond polynomial terms (nonintrusive)

| arXiv.org > math > arXiv:1912.08177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Search<br>Help   Advanced Searc                                         | All fields V Search                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mathematics > Numerical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Do                                                                      | Download:                                                                                                                                             |  |
| Lift & Learn: Physics-informed machine learning for large-scale nonline dynamical systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ear • F                                                                 | PDF     Other formats     (icense)                                                                                                                    |  |
| Elizabeth Qian, Boris Kramer, Benjamin Peherstorfer, Karen Willcox<br>(Submitted on 17 Dec 2019 (v1), last revised 23 Dec 2019 (this version, v2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | math                                                                    | Current browse context:<br>math.NA<br><prev next=""  =""><br/>new   recent   1912<br/>Change to browse by:<br/>cs<br/>cs.LG<br/>cs.NA<br/>math</prev> |  |
| We present Lift & Learn, a physics-informed method for learning low-dimensional models for large-scale dynamical systems. The m<br>exploits knowledge of a system's governing equations to identify a coordinate transformation in which the system dynamics have qu<br>structure. This transformation is called a filting map because it often adds auxiliary variables to the system state. The lifting map is a<br>data obtained by evaluating a model for the original molinear system. This lifted data is projected onto is leading principal compone<br>low-dimensional linear and quadratic matrix coperators are fit to the lifted reduced data using a leads-equares operator inference pro-<br>bands in the system of the state of the state of the system. This lifted data is projected onto is leading principal compone<br>low-dimensional linear and quadratic matrix coperators are fit to the lifted reduced data using a leads-equares operator inference pro- | ethod new<br>adratic Cha<br>pplied to cs<br>ents, and c<br>redure. math |                                                                                                                                                       |  |
| Analysis of our method shows that the Lift & Learn models are able to capture the system physics in the lifted coordinates at least as<br>accurately as rationial intrusive model reduction approaches. This presentation of system physics makes the Lift & Learn models robus<br>changes in inputs. Numerical experiments on the FitzHugh-Nagumo neuron activation model and the compressible Euler equations<br>demonstrate the generalizability of our model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | robust to Refe                                                          | erences & Citations<br>ASAADS                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exp                                                                     | ort citation<br>gle Scholar                                                                                                                           |  |

# Intro: Beyond polynomial terms (nonintrusive)



# Intro: Beyond polynomial terms (nonintrusive)



Boris Kramer, University of California San Diego

Original PDE Litting map

How general is the lifting appr

How is the lifting derived?

Acknowledgments

We present a data-driven non-intrusive model reduction method that learns lowdimensional models of dynamical systems with non-polynomial nonlinear terms that are spatially local and that are given in analytic form. The proposed approach requires only the non-polynomial terms in analytic form and learns the rest of the dynamics from snapshots computed with a potentially black-box full-model solver. The linear and polynomially nonlinear dynamics are learned by solving a linear least-squares problem where the analytically given non-polynomial terms are incorporated in the right-hand side of the least-squares problem. The resulting ROM thus contains learned polynomial operators together with the analytic form of the non-polynomial nonlinearity. The proposed method is demonstrated on several test problems which provides evidence that the proposed approach learns reduced models that achieve comparable accuracy as state-of-the-art intrusive model reduction methods that require full knowledge of the governing equations.

### Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}(t; \boldsymbol{\mu}) = & \mathbf{f}(\mathbf{x}(t; \boldsymbol{\mu}), \mathbf{u}(t); \boldsymbol{\mu}) \\ = & \sum_{i=1}^{\ell} \mathbf{A}_i(\boldsymbol{\mu}) \mathbf{x}^i(t; \boldsymbol{\mu}) + \mathbf{B}(\boldsymbol{\mu}) \mathbf{u}(t) \end{aligned}$$

#### Parameters

- Infer models  $\hat{\pmb{f}}(\cdot,\cdot;\pmb{\mu}_1),\ldots,\hat{\pmb{f}}(\cdot,\cdot;\pmb{\mu}_M)$  at parameters

$$\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_M\in\mathcal{D}$$

• For new  $\mu \in \mathcal{D}$ , interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

$$\hat{f}(\mu_1),\ldots,\hat{f}(\mu_M)$$

Trajectories

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_K] \in \mathbb{R}^{N \times K}$$
$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K] \in \mathbb{R}^{p \times K}$$

### Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{x}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t))$$
$$= \sum_{i=1}^{\ell} \boldsymbol{A}_i \boldsymbol{x}^i(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

#### Parameters

- Infer models  $\hat{\pmb{f}}(\cdot,\cdot;\pmb{\mu}_1),\ldots,\hat{\pmb{f}}(\cdot,\cdot;\pmb{\mu}_M)$  at parameters

$$\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_M\in\mathcal{D}$$

• For new  $\mu \in \mathcal{D}$ , interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

$$\hat{f}(\mu_1),\ldots,\hat{f}(\mu_M)$$

Trajectories

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_K] \in \mathbb{R}^{N \times K}$$
$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K] \in \mathbb{R}^{p \times K}$$

### Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

$$\begin{aligned} \boldsymbol{x}_{k+1} = \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k) \\ = \sum_{i=1}^{\ell} \boldsymbol{A}_i \boldsymbol{x}_k^i + \boldsymbol{B} \boldsymbol{u}_k, \qquad k = 0, \dots, K-1 \end{aligned}$$

#### Parameters

- Infer models  $\hat{\pmb{f}}(\cdot,\cdot;\pmb{\mu}_1),\ldots,\hat{\pmb{f}}(\cdot,\cdot;\pmb{\mu}_M)$  at parameters

$$\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_M\in\mathcal{D}$$

• For new  $\mu \in \mathcal{D}$ , interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]  $\hat{\ell}(\dots)$   $\hat{\ell}(\dots)$ 

$$f(\mu_1),\ldots,f(\mu_M)$$

Trajectories

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_K] \in \mathbb{R}^{N \times K}$$
$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K] \in \mathbb{R}^{p \times K}$$

### Intro: Classical (intrusive) model reduction

Given full model f, construct reduced  $\tilde{f}$  via projection

- **1.** Construct *n*-dim. basis  $\boldsymbol{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \in \mathbb{R}^{N \times n}$ 
  - Proper orthogonal decomposition (POD)
  - Interpolatory model reduction
  - Reduced basis method (RBM), ...
- 2. Project full-model operators  $A_1, \ldots, A_\ell, B$  onto reduced space, e.g.,

$$\tilde{\boldsymbol{A}}_{i} = \underbrace{\boldsymbol{V}^{T} \stackrel{N \times N^{i}}{\boldsymbol{A}_{i}} (\boldsymbol{V} \otimes \cdots \otimes \boldsymbol{V})}_{n \times n^{i}}, \qquad \tilde{\boldsymbol{B}} = \underbrace{\boldsymbol{V}^{T} \stackrel{N \times p}{\boldsymbol{B}}}_{n \times p}$$

3. Construct reduced model

$$\tilde{\boldsymbol{x}}_{k+1} = \tilde{\boldsymbol{f}}(\tilde{\boldsymbol{x}}_k, \boldsymbol{u}_k) = \sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_i \tilde{\boldsymbol{x}}_k^i + \tilde{\boldsymbol{B}} \boldsymbol{u}_k, \qquad k = 0, \dots, K-1$$

with  $n \ll N$  and  $\|\boldsymbol{V} \tilde{\boldsymbol{x}}_k - \boldsymbol{x}_k\|$  small in appropriate norm

[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

 $x_1$ 

 $x_{2}$ 

 $\boldsymbol{x}_K$ 

### Intro: Classical (intrusive) model reduction

Given full model f, construct reduced  $\tilde{f}$  via projection

- **1.** Construct *n*-dim. basis  $\boldsymbol{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \in \mathbb{R}^{N \times n}$ 
  - Proper orthogonal decomposition (POD)
  - Interpolatory model reduction
  - Reduced basis method (RBM), ...
- 2. Project full-model operators  $A_1, \ldots, A_\ell, B$  onto reduced space, e.g.,

$$\tilde{\boldsymbol{A}}_{i} = \underbrace{\boldsymbol{V}^{T} \stackrel{N \times N^{i}}{\boldsymbol{A}_{i}} (\boldsymbol{V} \otimes \cdots \otimes \boldsymbol{V})}_{n \times n^{i}}, \qquad \tilde{\boldsymbol{B}} = \underbrace{\boldsymbol{V}^{T} \stackrel{N \times p}{\boldsymbol{B}}}_{n \times p}$$

3. Construct reduced model

$$\tilde{\boldsymbol{x}}_{k+1} = \tilde{\boldsymbol{f}}(\tilde{\boldsymbol{x}}_k, \boldsymbol{u}_k) = \sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_i \tilde{\boldsymbol{x}}_k^i + \tilde{\boldsymbol{B}} \boldsymbol{u}_k, \qquad k = 0, \dots, K-1$$

with  $n \ll N$  and  $\|\boldsymbol{V} \tilde{\boldsymbol{x}}_k - \boldsymbol{x}_k\|$  small in appropriate norm

[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]



### Our approach: Learn reduced models from data

#### Sample (gray-box) high-dimensional system with inputs

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_0 & \cdots & \boldsymbol{u}_{K-1} \end{bmatrix}$$

to obtain trajectory

$$\boldsymbol{X} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_0 & \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_K \\ | & | & | \end{bmatrix}$$

Learn model  $\hat{f}$  from data U and X

$$\hat{\boldsymbol{x}}_{k+1} = \hat{\boldsymbol{f}}(\hat{\boldsymbol{x}}_k, \boldsymbol{u}_k)$$
  
=  $\sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_i \boldsymbol{x}_k^i + \hat{\boldsymbol{B}} \boldsymbol{u}_k, \qquad k = 0, \dots, K-1$ 



### Intro: Literature overview

System identification [Ljung, 1987], [Viberg, 1995], [Kramer, Gugercin, 2016], ...

**Learning in frequency domain** [Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Antoulas, 2016], [Gustavsen, Semlyen, 1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea, Ionita, 2016], [Gosea, Antoulas, 2018], [Benner, Goyal, Van Dooren, 2019], ...

#### Learning from time-domain data (output and state trajectories)

- Time series analysis (V)AR models, [Box et al., 2015], [Aicher et al., 2018, 2019], ...
- Learning models with dynamic mode decomposition [Schmid et al., 2008], [Rowley et al., 2009], [Proctor, Brunton, Kutz, 2016], [Benner, Himpe, Mitchell, 2018], ...
- Sparse identification [Brunton, Proctor, Kutz, 2016], [Schaeffer et al, 2017, 2018], ...
- Deep networks [Raissi, Perdikaris, Karniadakis, 2017ab], [Qin, Wu, Xiu, 2019], ...
- Bounds for LTI systems [Campi et al, 2002], [Vidyasagar et al, 2008], ...

#### Correction and data-driven closure modeling

- Closure modeling [Chorin, Stinis, 2006], [Oliver, Moser, 2011], [Parish, Duraisamy, 2015], [Iliescu et al, 2018, 2019], ...
- Higher order dynamic mode decomposition [Le Clainche and Vega, 2017], [Champion et al., 2018]

### Outline

- Introduction and motivation
- Operator inference for learning low-dimensional models
- Sampling Markovian data for recovering reduced models
- Rigorous and pre-asymptotic error estimators
- Learning time delays to go beyond Markovian models
- Conclusions

### OpInf: Fitting low-dim model to trajectories

1. Construct POD (PCA) basis of dimension  $n \ll N$ 

$$\boldsymbol{V} = [\boldsymbol{v}_1, \cdots, \boldsymbol{v}_n] \in \mathbb{R}^{N \times n}$$

2. Project state trajectory onto the reduced space

$$oldsymbol{\check{X}} = oldsymbol{V}^Toldsymbol{X} = [oldsymbol{\check{x}}_1, \cdots, oldsymbol{\check{x}}_K] \in \mathbb{R}^{n imes K}$$

3. Find operators  $\hat{A}_1, \ldots, \hat{A}_\ell, \hat{B}$  such that

$$oldsymbol{\check{x}}_{k+1} pprox \sum_{i=1}^{\ell} \hat{oldsymbol{A}}_i oldsymbol{\check{x}}_k^i + \hat{oldsymbol{B}} oldsymbol{u}_k, \qquad k = 0, \cdots, K-1$$

by minimizing the residual in Euclidean norm

$$\min_{\hat{\boldsymbol{A}}_{1},...,\hat{\boldsymbol{A}}_{\ell},\hat{\boldsymbol{B}}}\sum_{k=0}^{K-1} \left\| \boldsymbol{\check{x}}_{k+1} - \sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \boldsymbol{\check{x}}_{k}^{i} - \hat{\boldsymbol{B}} \boldsymbol{u}_{k} \right\|_{2}^{2}$$

[P., Willcox, Data driven operator inference for nonintrusive projection-based model reduction; Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016]

# **OpInf:** Learning from projected trajectory

#### Fitting model to projected states

• We fit model to projected trajectory

$$m{X} = m{V}^Tm{X}$$

• Would need 
$$\tilde{\boldsymbol{X}} = [\tilde{\boldsymbol{x}}_1, \dots, \tilde{\boldsymbol{x}}_K]$$
 because

$$\sum_{k=0}^{K-1} \left\| \tilde{\boldsymbol{x}}_{k+1} - \sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_i \tilde{\boldsymbol{x}}_k^i - \tilde{\boldsymbol{B}} \boldsymbol{u}_k \right\|_2^2 =$$

• However, trajectory  $\tilde{X}$  unavailable

1.6 1.4 2-norm of states 1.2 projected 1 int. model reduction + 0.8 OpInf (w/out re-proj) 0.6 0.4 0.2 0 20 30 10 40 50 60 70 80 90 100

time step k

Thus,  $\|\hat{f} - \tilde{f}\|$  small critically depends on  $\|\check{X} - \check{X}\|$  being small

• Increase dimension *n* of reduced space to decrease  $\|\breve{X} - \widetilde{X}\|$ 

 $\Rightarrow$  increases degrees of freedom in OpInf  $\Rightarrow$  ill-conditioned

• Decrease dimension *n* to keep number of degrees of freedom low  $\Rightarrow$  difference  $\|\breve{X} - \widetilde{X}\|$  increases

### **OpInf: Closure of linear system**

Consider autonomous linear system

$$\boldsymbol{x}_{k+1} = \boldsymbol{A} \boldsymbol{x}_k, \qquad \boldsymbol{x}_0 \in \mathbb{R}^N, \quad k = 0, \dots, K-1$$

• Split  $\mathbb{R}^N$  into  $\mathcal{V} = \operatorname{span}(\boldsymbol{V})$  and  $\mathcal{V}_\perp = \operatorname{span}(\boldsymbol{V}_\perp)$ 

$$\mathbb{R}^{N} = \mathcal{V} \oplus \mathcal{V}_{\perp}$$

• Split state

$$oldsymbol{x}_k = oldsymbol{V} \underbrace{oldsymbol{V}^T oldsymbol{x}_k}_{oldsymbol{x}_k^{\parallel}} + oldsymbol{V}_{\perp} \underbrace{oldsymbol{V}_{\perp}^T oldsymbol{x}_k}_{oldsymbol{x}_k^{\perp}}$$

Represent system as

$$\begin{aligned} \mathbf{x}_{k+1}^{\parallel} = & \mathbf{A}_{11} \mathbf{x}_{k}^{\parallel} + \mathbf{A}_{12} \mathbf{x}_{k}^{\perp} \\ \mathbf{x}_{k+1}^{\perp} = & \mathbf{A}_{21} \mathbf{x}_{k}^{\parallel} + \mathbf{A}_{22} \mathbf{x}_{k}^{\perp} \end{aligned}$$

with operators

$$\boldsymbol{A}_{11} = \underbrace{\boldsymbol{V}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{V}}_{=\tilde{\boldsymbol{A}}}, \quad \boldsymbol{A}_{12} = \boldsymbol{V}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{V}_{\perp}, \quad \boldsymbol{A}_{21} = \boldsymbol{V}_{\perp}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{V}, \quad \boldsymbol{A}_{22} = \boldsymbol{V}_{\perp}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{V}_{\perp}$$

[Givon, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006] [Parish, Duraisamy, 2017]

### OpInf: Closure term as a non-Markovian term

Projected trajectory  $\breve{X}$  mixes dynamics in  $\mathcal{V}$  and  $\mathcal{V}_{\perp}$ 

$$\boldsymbol{V}^{T}\boldsymbol{x}_{k+1} = \breve{\boldsymbol{x}}_{k+1} = \boldsymbol{x}_{k+1}^{\parallel} = \boldsymbol{A}_{11}\boldsymbol{x}_{k}^{\parallel} + \boldsymbol{A}_{12}\boldsymbol{x}_{k}^{\perp}$$

Mori-Zwanzig formalism gives [Givon, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006]

$$V^{T} \mathbf{x}_{k+1} = \mathbf{x}_{k+1}^{\parallel} = \mathbf{A}_{11} \mathbf{x}_{k}^{\parallel} + \mathbf{A}_{12} \mathbf{x}_{k}^{\perp}$$
$$= \mathbf{A}_{11} \mathbf{x}_{k}^{\parallel} + \sum_{j=1}^{k-1} \mathbf{A}_{22}^{k-j-1} \mathbf{A}_{21} \mathbf{x}_{j}^{\parallel} + \mathbf{A}_{12} \mathbf{A}_{22}^{k-1} \mathbf{x}_{0}^{\perp}$$

Non-Markovian (memory) term models unobserved dynamics



### Outline

- Introduction and motivation
- Operator inference for learning low-dimensional models
- Sampling Markovian data for recovering reduced models
- Rigorous and pre-asymptotic error estimators
- Learning time delays to go beyond Markovian models
- Conclusions

# ReProj: Handling non-Markovian dynamics

#### Ignore non-Markovian dynamics

- Have significant impact on model accuracy (much more than in classical model reduction?)
- Guarantees on models?

### Fit models with different forms to capture non-Markovian dynamics

- Length of memory (support of kernel) typically unknown
- Time-delay embedding increase dimension of reduced states, which is what we want to reduce
- Model reduction (theory) mostly considers Markovian reduced models

### Our approach: Control length of memory when sampling trajectories

- Set length of memory to 0 for sampling Markovian dynamics
- Increase length of memory in a controlled way (lag is known)
- Modify the sampling scheme, instead of learning step
- Emphasizes importance of generating the "right" data

### ReProj: Avoiding closure

Mori-Zwanzig formalism explains projected trajectory as



Sample Markovian dynamics by setting memory and noise to 0

- Set  $\boldsymbol{x}_0 \in \mathcal{V}$ , then noise is 0
- Take a single time step, then memory term is 0

Sample trajectory by re-projecting state of previous time step onto  $\ensuremath{\mathcal{V}}$ 

Establishes "independence"

### ReProj: Sampling with re-projection

Data sampling: Cancel non-Markovian terms via re-projection 1. Project initial condition  $\mathbf{x}_0$  onto  $\mathcal{V}$ 

$$ar{m{x}}_0 = m{V}^Tm{x}_0$$

2. Query high-dim. system for a single time step with  $V\bar{x}_0$ 

$$oldsymbol{x}_1 = oldsymbol{f}(oldsymbol{V}oldsymbol{ar{x}}_0,oldsymbol{u}_0)$$

- 3. Re-project to obtain  $\bar{\boldsymbol{x}}_1 = \boldsymbol{V}^T \boldsymbol{x}_1$
- 4. Query high-dim. system with re-projected initial condition  $oldsymbol{V}ar{x}_1$

$$\boldsymbol{x}_2 = \boldsymbol{f}(\boldsymbol{V}\boldsymbol{\bar{x}}_1, \boldsymbol{u}_1)$$

5. Repeat until end of time-stepping loop

**Obtain trajectories** 

$$\bar{\boldsymbol{X}} = [\bar{\boldsymbol{x}}_0, \dots, \bar{\boldsymbol{x}}_{K-1}], \qquad \bar{\boldsymbol{Y}} = [\bar{\boldsymbol{x}}_1, \dots, \bar{\boldsymbol{x}}_K], \qquad \boldsymbol{U} = [\boldsymbol{u}_0, \dots, \boldsymbol{u}_{K-1}]$$

[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. arXiv:1908.11233, 2019.]

### ReProj: Operator inference with re-projection

Operator inference with re-projected trajectories

$$\min_{\hat{A}_{1},...,\hat{A}_{\ell},\hat{B}} \left\| \bar{\boldsymbol{Y}} - \sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \bar{\boldsymbol{X}}^{i} - \hat{\boldsymbol{B}} \boldsymbol{U} \right\|_{F}^{2}$$

**Theorem** (*Simplified*) Consider time-discrete system with polynomial nonlinear terms of maximal degree  $\ell$  and linear input. If  $K \ge \sum_{i=1}^{\ell} n^i + 2$  and matrix  $[\bar{\boldsymbol{X}}, \boldsymbol{U}, \bar{\boldsymbol{X}}^2, \dots, \bar{\boldsymbol{X}}^\ell]$  has full rank, then  $\|\bar{\boldsymbol{X}} - \tilde{\boldsymbol{X}}\| = 0$  and thus  $\hat{\boldsymbol{f}} = \tilde{\boldsymbol{f}}$  in the sense

$$\|\hat{\boldsymbol{A}}_1 - \tilde{\boldsymbol{A}}_1\|_F = \cdots = \|\hat{\boldsymbol{A}}_\ell - \tilde{\boldsymbol{A}}_\ell\|_F = \|\tilde{\boldsymbol{B}} - \hat{\boldsymbol{B}}\|_F = 0$$

- · Pre-asymptotic guarantees, in contrast to learning from projected data
- Re-projection is a nonintrusive operation
- Requires querying high-dim. system twice
- Initial conditions remain "physically meaningful"

#### Provides a means to find model form

[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. arXiv:1908.11233, 2019.]

### ReProj: Queryable systems

### Definition: Queryable systems [Uy, P., 2020]

A dynamical system is queryable, if the trajectory  $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_K]$  with  $K \ge 1$  can be computed for initial condition  $\mathbf{x}_0 \in \mathcal{V}$  and feasible input trajectory  $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$ .

### Details about how trajectories computed unnecessary

- Discretization (FEM, FD, FV, etc)
- Time-stepping scheme
- Time-step size
- In particular, neither explicit nor implicit access to operators required

#### Insufficient to have only data available

- Need to query system at re-projected states
- Similar requirement as for active learning



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1,1]
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1,1]
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

- Spatial, time, and parameter domain
  - $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$
- Dirichlet boundary conditions

$$x(0, t; \mu) = -x(1, t; \mu) = u(t)$$

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in  $\left[0.1,1\right]$
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

- Spatial, time, and parameter domain
  - $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$
- Dirichlet boundary conditions

$$x(0, t; \mu) = -x(1, t; \mu) = u(t)$$

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in  $\left[0.1,1\right]$
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- $\bullet\,$  Infer operators for 10 equidistant parameters in [0.1,1]
- Interpolate inferred operators at 7 test parameters and predict



### ReProj: Burgers': Operator inference



#### Error of reduced models at test data

- Inferring operators from projected data fails in this example
- Recover reduced model from re-projected data

### ReProj: Burgers': Operator inference



#### Error of reduced models at test data

- Inferring operators from projected data fails in this example
- Recover reduced model from re-projected data

### ReProj: Burgers': Operator inference



#### Error of reduced models at test data

- Inferring operators from projected data fails in this example
- Recover reduced model from re-projected data

ReProj: Burgers': Recovery



#### The difference between state trajectories

- Model from intrusive model reduction same as OpInf with re-proj.
- Model learned from state trajectories without re-projection differs

### ReProj: Chafee: Chafee-Infante example

#### **Chafee-Infante equation**

$$rac{\partial}{\partial t}x(\omega,t)+x^3(\omega,t)-rac{\partial^2}{\partial\omega^2}x(\omega,t)-x(\omega,t)=0$$

- Boundary conditions as in [Benner et al., 2018]
- Spatial domain  $\omega \in [0,1]$
- Time domain  $t \in [0, 10]$
- Forward Euler with  $\delta t = 10^{-4}$
- Cubic nonlinear term

#### 2 1.8 1.6 1.4 1.2 output 1 0.8 0.6 0.4 0.2 2 6 8 10 0 4 time [s]

- Infer operators from single trajectory corresponding to random inputs
- Test inferred model on oscillatory input

### ReProj: Chafee: Recovery



#### Error of reduced models on test parameters

- Projected data leads to unstable inferred model
- Inference from data with re-projection shows stabler behavior

# Outline

### • Introduction and motivation



Conclusions

# Outline

- Introduction and motivation
- Operator inference for learning low-dimensional models
- Sampling Markovian data for recovering reduced models
- Rigorous and pre-asymptotic error estimators
- Learning time delays to go beyond Markovian models
- Conclusions

# ErrEst: Error estimation for learned models

### Assumptions\*: Symmetric asymptotically stable linear system

- If not symmetric, then need to assume  $\| {m A}_1 \| \leq 1$  (for now...)
- Derive reduced model with operator inference and re-projection
- Requires full residual of reduced-model states in training phase

### Error estimation based on [Haasdonk, Ohlberger, 2009]

• Residual at time step k

$$\boldsymbol{r}_k = \boldsymbol{A}_1 \boldsymbol{V} \hat{\boldsymbol{x}}_k + \boldsymbol{B} u_k - \boldsymbol{V} \hat{\boldsymbol{x}}_{k+1}$$

• Bound on state error if initial condition in  $\text{span}\{\textbf{\textit{V}}\}$ 

$$\|\boldsymbol{x}_k - \boldsymbol{V}\hat{\boldsymbol{x}}_k\|_2 \leq C_1 \left(\sum_{i=1}^{k-1} \|\boldsymbol{r}_k\|_2\right)$$

• Offline/online splitting of computing residual norm  $\|\boldsymbol{r}_k\|_2$ 

$$\|\boldsymbol{r}_{k}\|_{2}^{2} = \hat{\boldsymbol{x}}_{k}^{T} \underbrace{\boldsymbol{V}^{T} \boldsymbol{A}_{1}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M_{1}}} \hat{\boldsymbol{x}}_{k} + u_{k} \underbrace{\boldsymbol{B}^{T} \boldsymbol{B}}_{\boldsymbol{M_{2}}} u_{k} + \hat{\boldsymbol{x}}_{k+1} \boldsymbol{V}^{T} \boldsymbol{V} \hat{\boldsymbol{x}}_{k+1} + 2u_{k}^{T} \underbrace{\boldsymbol{B}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M_{3}}} \hat{\boldsymbol{x}}_{k} - 2\hat{\boldsymbol{x}}_{k+1}^{T} \hat{\boldsymbol{A}}_{1} \hat{\boldsymbol{x}}_{k+1} - 2\hat{\boldsymbol{x}}_{k+1} \hat{\boldsymbol{B}} u_{k}$$

## ErrEst: Learning error operators from data

From [Haasdonk, Ohlberger, 2009] have

$$\|\boldsymbol{r}_{k}\|_{2}^{2} = \hat{\boldsymbol{x}}_{k}^{T} \underbrace{\boldsymbol{V}^{T} \boldsymbol{A}_{1}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M_{1}}} \hat{\boldsymbol{x}}_{k} + u_{k} \underbrace{\boldsymbol{B}^{T} \boldsymbol{B}}_{\boldsymbol{M_{2}}} u_{k} + \hat{\boldsymbol{x}}_{k+1} \boldsymbol{V}^{T} \boldsymbol{V} \hat{\boldsymbol{x}}_{k+1} + 2u_{k}^{T} \underbrace{\boldsymbol{B}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M_{3}}} \hat{\boldsymbol{x}}_{k} - 2\hat{\boldsymbol{x}}_{k+1}^{T} \hat{\boldsymbol{A}}_{1} \hat{\boldsymbol{x}}_{k+1} - 2\hat{\boldsymbol{x}}_{k+1} \hat{\boldsymbol{B}} u_{k}$$

Query system at training inputs to compute residual trajectories

$$\boldsymbol{R} = \begin{bmatrix} | & | & | \\ \boldsymbol{r}_1 & \boldsymbol{r}_2 & \dots & \boldsymbol{r}_K \\ | & | & | \end{bmatrix}$$

Learn quantities  $M_1, M_2, M_3$  via operator inference

- Fit error operators  $M_1, M_2, M_3$  to residual trajectories
- Bound constant  $C_1$  and constants for output error

#### Obtain certified reduced models from data alone

[Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial differential equations with control inputs, in preparation, 2020]

# ErrEst: Convection-diffusion in a pipe

### Governed by parabolic PDE

$$\begin{split} \frac{\partial x}{\partial t} &= \Delta x - (1,1) \cdot \nabla x, & \text{in } \Omega \\ x &= 0, & \Gamma \setminus \{E_i\}_{i=1}^5 \\ \nabla x \cdot \mathbf{n} &= g_i(t), & \text{in } E_i \end{split}$$

- Discretize with finite elements
- Degrees of freedom N = 1121
- Forward Euler method  $\delta t = 10^{-5}$
- End time is T = 0.5

### Input signals

- Training signal is sinusoidal
- Test signal is exponentially decaying sinusoidal with different frequency than training







# ErrEst: Recovering reduced models from data



### Recover reduced models from data

- Error averaged over time
- Recover reduced model up to numerical errors

# ErrEst: Error bounds



#### Learn certified reduced model from data alone

- Train with sinusoidal and test with exponential input
- Infer quantities from residual of full model (offline/training)
- Estimate error for test inputs

# Outline

### Introduction and motivation



 Learning time delays to go beyond iviarkovian models

### Conclusions

# Outline

### • Introduction and motivation



• Conclusions

# NonM: Non-Markovian reduced models



### Learning non-Markovian low-dim. models in model reduction

- (Full model is non-Markovian [Schulze, Unger, Beattie, Gugercin, 2018])
- Closure error is high and needs to be corrected (steep gradients, shocks)
- Only partially observed state trajectory available

### NonM: Learning non-Markovian reduced models

With re-projection, exactly learn Markovian reduced model

$$ilde{m{x}}_{k+1} = \sum_{i=1}^{\ell} ilde{m{A}}_i ilde{m{x}}_k^i + ilde{m{B}} m{u}_k$$

However, loose dynamics modeled by non-Markovian terms

$$\check{\mathbf{x}}_{k+1} = \sum_{i=1}^{\ell} \tilde{\mathbf{A}}_i \check{\mathbf{x}}_k^i + \tilde{\mathbf{B}} \mathbf{u}_k + \sum_{i=1}^{k-1} \mathbf{\Delta}_i (\check{\mathbf{x}}_{k-1}, \dots, \check{\mathbf{x}}_{k-i+1}, \mathbf{u}_k, \dots, \mathbf{u}_{k-i+1}) + 0$$

Learn unresolved dynamics via approximate non-Markovian terms

$$\hat{\boldsymbol{x}}_{k+1} = \sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_i \hat{\boldsymbol{x}}_k^i + \hat{\boldsymbol{B}} \boldsymbol{u}_k + \sum_{i=1}^{k-1} \hat{\boldsymbol{\Delta}}_i^{\boldsymbol{\theta}_i} (\hat{\boldsymbol{x}}_{k-1}, \dots, \hat{\boldsymbol{x}}_{k-i+1}, \boldsymbol{u}_k, \dots, \boldsymbol{u}_{k-i+1})$$

- Parametrization  $\boldsymbol{\theta}_i \in \Theta$  for  $i = 0, \dots, K-1$
- Non-Markovian models extensively used in statistics but less so in MOR

# NonM: Sampling with stage-wise re-projection

# Learning model operators and non-Markovian terms at the same $\Rightarrow$ Dynamics mixed, same issues as learning from projected states

### Build on re-projection to learn non-Markovian terms stage-wise

• Sample trajectories of length r + 1 with re-projection

$$ar{oldsymbol{X}}^{(0)},\ldots,ar{oldsymbol{X}}^{(K-1)}\in\mathbb{R}^{n imes r+1}$$

• Infer Markovian reduced model  $\hat{f}_1$  from one-step trajectories

$$\bar{\boldsymbol{X}}_{1}^{(i)} = [\bar{\boldsymbol{x}}_{0}^{(i)}, \bar{\boldsymbol{x}}_{1}^{(i)}], \qquad i = 0, \dots, K-1$$

• Simulate  $\hat{f}_1$  to obtain

$$\hat{\boldsymbol{X}}_{2}^{(i)} = [\hat{\boldsymbol{x}}_{0}^{(i)}, \hat{\boldsymbol{x}}_{1}^{(i)}, \hat{\boldsymbol{x}}_{2}^{(i)}], \qquad i = 0, \dots, K-1$$

- Fit parameter  $heta_1$  of non-Markovian term  $\hat{\Delta}_1^{ heta_1}$  to difference

$$\min_{\theta_1 \in \Theta} \sum_{i=0}^{K-1} \|\bar{\mathbf{x}}_2^{(i)} - \hat{\mathbf{x}}_2^{(i)} - \hat{\mathbf{\Delta}}_1^{(\theta_1)}(\bar{\mathbf{x}}_0^{(i)}, \mathbf{u}_i)\|_2^2$$

• Repeat this r times to learn  $\hat{f}_r$  with lag r

# NonM: Learning non-Markovian terms

### Parametrization of non-Markovian terms

- Set  $\boldsymbol{\theta}_i = [\boldsymbol{D}_i, \boldsymbol{E}_i]$  with  $\boldsymbol{D}_i \in \mathbb{R}^{n \times n}$  and  $\boldsymbol{E}_i \in \mathbb{R}^{n \times p}$
- Non-Markovian term is

$$\hat{\boldsymbol{\Delta}}_i^{(\boldsymbol{\theta}_i)}(\hat{\boldsymbol{x}}_{k-1},\ldots,\hat{\boldsymbol{x}}_{k-i+1},\boldsymbol{u}_k,\ldots,\boldsymbol{u}_{k-i+1}) = \boldsymbol{D}_i \hat{\boldsymbol{x}}_{k-i+1} + \boldsymbol{E}_i \boldsymbol{u}_{k-i+1}$$

• Other parametrizations with higher-order terms and neural networks

### Choosing maximal lag

- Assumption (observation) is that non-Markovian term of system has small support
- Need to go back in time only a few steps
- Lag r can be chosen small



# NonM: Learning from partially observed states

### Partially observed state trajectories

- Unknown selection operator
  - $oldsymbol{S} \in \{0,1\}^{N_s imes N}$  with  $N_s < N$  and

$$\boldsymbol{z}_{k} = \boldsymbol{S}\boldsymbol{x}_{k}$$
• Learn models from trajectory  

$$\boldsymbol{z} = [\boldsymbol{z}_{0}, \dots, \boldsymbol{z}_{K-1}] \text{ instead}$$
of  $\boldsymbol{X} = [\boldsymbol{x}_{0}, \dots, \boldsymbol{x}_{K-1}]$ 

 Apply POD (PCA) to Z to find basis matrix V of subspace V of R<sup>Ns</sup>

#### Non-Markovian terms to compensate unobserved state components

- Mori-Zwanzig formalism applies
- Non-Markovian terms compensate unobserved components

### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in  $\left[0.1,1\right]$
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in  $\left[0.1,1\right]$
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- $\bullet\,$  Infer operators for 10 equidistant parameters in [0.1,1]
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in  $\left[0.1,1\right]$
- Interpolate inferred operators at 7 test parameters and predict



### Viscous Burgers' equation

$$\frac{\partial}{\partial t}x(\omega,t;\mu) + x(\omega,t;\mu)\frac{\partial}{\partial \omega}x(\omega,t;\mu) - \mu\frac{\partial^2}{\partial \omega^2}x(\omega,t;\mu) = 0$$

• Spatial, time, and parameter domain

 $\omega \in \left[ 0,1\right] ,\quad t\in \left[ 0,1\right] ,\quad \mu \in \left[ 0.1,1\right]$ 

• Dirichlet boundary conditions

 $x(0, t; \mu) = -x(1, t; \mu) = u(t)$ 

- Discretize with forward Euler
- Time step size is  $\delta t = 10^{-4}$

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in  $\left[0.1,1\right]$
- Interpolate inferred operators at 7 test parameters and predict



# NonM: Burgers': Partial observations



#### Observe only about 50% of all state components

- Linear time-delay terms with stage-wise re-projection
- Reduces error of inferred model by more than one order of magnitude

# NonM: Burgers': Shock formation



### Modify coefficients of Burgers' equation to obtain solution with shock

- Solutions with shocks are challenging to reduce with model reduction
- Here, reduced model from intrusive model reduction has oscillatory error



- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]



- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]



- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]



- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

# Conclusions



Learning dynamical-system models from data with error guarantees

- Operator inference exactly recovers reduced models from data
- Generating the right data is key to learning reduced models in our case
- Pre-asymptotic guarantees (finite data) under certain conditions
- Going beyond reduced models by learning non-Markovian corrections

### References: https://cims.nyu.edu/~pehersto

- Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial differential equations with control inputs, in preparation, 2020.
- P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. arXiv:1908.11233, 2019.
- P., Willcox, Data-driven operator inference for nonintrusive projection-based model reduction. Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016.