Sampling low-dimensional Markovian dynamics for learning certified reduced models from data

Wayne Isaac Tan Uy and Benjamin Peherstorfer
Courant Institute of Mathematical Sciences, New York University

February 2020

Learning dynamical-system models from data

Learn low-dimensional model from data of dynamical system

- Interpretable
- System \& control theory
- Fast predictions
- Guarantees for finite data

Recovering reduced models from data

Learn low-dimensional model from data of dynamical system

- Interpretable
- System \& control theory
- Fast predictions
- Guarantees for finite data

Learn reduced model from trajectories of high-dim. system

- Recover exactly and pre-asymptotically reduced models from data
- Then build on rich theory of model reduction to establish error control

Intro: Polynomial nonlinear terms

Models with polynomial nonlinear terms

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}(t ; \boldsymbol{\mu}) & =\boldsymbol{f}(\boldsymbol{x}(t ; \boldsymbol{\mu}), \boldsymbol{u}(t) ; \boldsymbol{\mu}) \\
& =\sum_{i=1}^{\ell} \boldsymbol{A}_{i}(\boldsymbol{\mu}) \boldsymbol{x}^{i}(t ; \boldsymbol{\mu})+\boldsymbol{B}(\boldsymbol{\mu}) \boldsymbol{u}(t)
\end{aligned}
$$

- Polynomial degree $\ell \in \mathbb{N}$
- Kronecker product $\boldsymbol{x}^{i}(t ; \boldsymbol{\mu})=\bigotimes_{j=1}^{i} \boldsymbol{x}(t ; \boldsymbol{\mu})$
- Operators $\boldsymbol{A}_{i}(\boldsymbol{\mu}) \in \mathbb{R}^{N \times N^{i}}$ for $i=1, \ldots, \ell$
- Input operator $B(\boldsymbol{\mu}) \in \mathbb{R}^{N \times p}$

Lifting and transformations

- Lift general nonlinear systems to quadratic-bilinear ones [Gu, 2011], [Benner, Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox, 2019], [Qian, Kramer, P., Willcox, 2019]
- Koopman lifts nonlinear systems to infinite linear systems [Rowley et al, 2009], [Schmid, 2010]

Intro: Beyond polynomial terms (nonintrusive)

Intro: Beyond polynomial terms (nonintrusive)

Intro: Beyond polynomial terms (nonintrusive)

Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}(t ; \boldsymbol{\mu}) & =\boldsymbol{f}(\boldsymbol{x}(t ; \boldsymbol{\mu}), \boldsymbol{u}(t) ; \boldsymbol{\mu}) \\
& =\sum_{i=1}^{\ell} \boldsymbol{A}_{i}(\boldsymbol{\mu}) \boldsymbol{x}^{i}(t ; \boldsymbol{\mu})+\boldsymbol{B}(\boldsymbol{\mu}) \boldsymbol{u}(t)
\end{aligned}
$$

Parameters

- Infer models $\hat{\boldsymbol{f}}\left(\cdot, \cdot ; \boldsymbol{\mu}_{1}\right), \ldots, \hat{\boldsymbol{f}}\left(\cdot, \cdot ; \boldsymbol{\mu}_{M}\right)$ at parameters

$$
\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{M} \in \mathcal{D}
$$

- For new $\boldsymbol{\mu} \in \mathcal{D}$, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

$$
\hat{\boldsymbol{f}}\left(\boldsymbol{\mu}_{1}\right), \ldots, \hat{\boldsymbol{f}}\left(\boldsymbol{\mu}_{M}\right)
$$

Trajectories

$$
\begin{aligned}
\boldsymbol{X} & =\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right] \in \mathbb{R}^{N \times K} \\
\boldsymbol{U} & =\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{K}\right] \in \mathbb{R}^{\boldsymbol{p} \times K}
\end{aligned}
$$

Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{x}(t) & =\boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t)) \\
& =\sum_{i=1}^{\ell} \boldsymbol{A}_{i} \boldsymbol{x}^{i}(t)+\boldsymbol{B} \boldsymbol{u}(t)
\end{aligned}
$$

Parameters

- Infer models $\hat{\boldsymbol{f}}\left(\cdot, \cdot ; \boldsymbol{\mu}_{1}\right), \ldots, \hat{\boldsymbol{f}}\left(\cdot, \cdot ; \boldsymbol{\mu}_{M}\right)$ at parameters

$$
\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{M} \in \mathcal{D}
$$

- For new $\boldsymbol{\mu} \in \mathcal{D}$, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

$$
\hat{\boldsymbol{f}}\left(\boldsymbol{\mu}_{1}\right), \ldots, \hat{\boldsymbol{f}}\left(\boldsymbol{\mu}_{M}\right)
$$

Trajectories

$$
\begin{aligned}
\boldsymbol{X} & =\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right] \in \mathbb{R}^{N \times K} \\
\boldsymbol{U} & =\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{K}\right] \in \mathbb{R}^{\boldsymbol{p} \times K}
\end{aligned}
$$

Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{f}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}\right) \\
& =\sum_{i=1}^{\ell} \boldsymbol{A}_{i} \boldsymbol{x}_{k}^{i}+\boldsymbol{B} \boldsymbol{u}_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

Parameters

- Infer models $\hat{\boldsymbol{f}}\left(\cdot, \cdot ; \boldsymbol{\mu}_{1}\right), \ldots, \hat{\boldsymbol{f}}\left(\cdot, \cdot ; \boldsymbol{\mu}_{M}\right)$ at parameters

$$
\mu_{1}, \ldots, \mu_{M} \in \mathcal{D}
$$

- For new $\boldsymbol{\mu} \in \mathcal{D}$, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

$$
\hat{\boldsymbol{f}}\left(\boldsymbol{\mu}_{1}\right), \ldots, \hat{\boldsymbol{f}}\left(\boldsymbol{\mu}_{M}\right)
$$

Trajectories

$$
\begin{aligned}
\boldsymbol{X} & =\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right] \in \mathbb{R}^{N \times K} \\
\boldsymbol{U} & =\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{K}\right] \in \mathbb{R}^{\boldsymbol{p} \times K}
\end{aligned}
$$

Intro: Classical (intrusive) model reduction

Given full model f, construct reduced \tilde{f} via projection

1. Construct n-dim. basis $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \in \mathbb{R}^{N \times n}$

- Proper orthogonal decomposition (POD)
- Interpolatory model reduction
- Reduced basis method (RBM), ...

2. Project full-model operators $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell}, \boldsymbol{B}$ onto reduced space, e.g.,

$$
\tilde{\boldsymbol{A}}_{i}=\underbrace{\boldsymbol{V}^{T} \overbrace{\boldsymbol{A}_{i}}^{N \times N^{i}}(\boldsymbol{V} \otimes \cdots \otimes \boldsymbol{V})}_{n \times n^{i}}, \quad \tilde{\boldsymbol{B}}=\underbrace{\boldsymbol{V}^{T} \overbrace{\boldsymbol{B}}^{N \times p}}_{n \times p}
$$

3. Construct reduced model

$$
\tilde{\boldsymbol{x}}_{k+1}=\tilde{\boldsymbol{f}}\left(\tilde{\boldsymbol{x}}_{k}, \boldsymbol{u}_{k}\right)=\sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_{i} \tilde{x}_{k}^{i}+\tilde{\boldsymbol{B}} \boldsymbol{u}_{k}, \quad k=0, \ldots, K-1
$$

with $n \ll N$ and $\left\|V \tilde{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|$ small in appropriate norm

Intro: Classical (intrusive) model reduction

Given full model f, construct reduced \tilde{f} via projection

1. Construct n-dim. basis $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right] \in \mathbb{R}^{N \times n}$

- Proper orthogonal decomposition (POD)
- Interpolatory model reduction
- Reduced basis method (RBM), ...

2. Project full-model operators $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\ell}, B$ onto reduced space, e.g.,

$$
\tilde{\boldsymbol{A}}_{i}=\underbrace{\boldsymbol{V}^{T} \overbrace{\boldsymbol{A}_{i}}^{N \times N^{i}}(\boldsymbol{V} \otimes \cdots \otimes \boldsymbol{V})}_{n \times n^{i}}, \quad \tilde{\boldsymbol{B}}=\underbrace{\boldsymbol{V}^{T} \overbrace{B}^{N \times p}}_{n \times p}
$$

3. Construct reduced model

$$
\tilde{\boldsymbol{x}}_{k+1}=\tilde{\boldsymbol{f}}\left(\tilde{\boldsymbol{x}}_{k}, \boldsymbol{u}_{k}\right)=\sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_{i} \tilde{x}_{k}^{i}+\tilde{\boldsymbol{B}} \boldsymbol{u}_{k}, \quad k=0, \ldots, K-1
$$

with $n \ll N$ and $\left\|V \tilde{\boldsymbol{x}}_{k}-\boldsymbol{x}_{k}\right\|$ small in appropriate norm

Our approach: Learn reduced models from data

Sample (gray-box) high-dimensional system with inputs

$$
\boldsymbol{U}=\left[\begin{array}{lll}
\boldsymbol{u}_{0} & \cdots & \boldsymbol{u}_{K-1}
\end{array}\right]
$$

to obtain trajectory

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{0} & x_{1} & \cdots & x_{K} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Learn model $\hat{\boldsymbol{f}}$ from data \boldsymbol{U} and \boldsymbol{X}

$$
\begin{aligned}
\hat{\boldsymbol{x}}_{k+1} & =\hat{\boldsymbol{f}}\left(\hat{\boldsymbol{x}}_{k}, \boldsymbol{u}_{k}\right) \\
& =\sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \boldsymbol{x}_{k}^{i}+\hat{\boldsymbol{B}} \boldsymbol{u}_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

Intro: Literature overview

System identification [Ljung, 1987], [Viberg, 1995], [Kramer, Gugercin, 2016], ...

Learning in frequency domain [Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010], [Antoulas, 2016], [Gustavsen, Semlyen, 1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea, lonita, 2016], [Gosea, Antoulas, 2018], [Benner, Goyal, Van Dooren, 2019], ...

Learning from time-domain data (output and state trajectories)

- Time series analysis (V)AR models, [Box et al., 2015], [Aicher et al., 2018, 2019], ...
- Learning models with dynamic mode decomposition [Schmid et al., 2008], [Rowley et al., 2009], [Proctor, Brunton, Kutz, 2016], [Benner, Himpe, Mitchell, 2018], ...
- Sparse identification [Brunton, Proctor, Kutz, 2016], [Schaeffer et al, 2017, 2018], ...
- Deep networks [Raissi, Perdikaris, Karniadakis, 2017ab], [Qin, Wu, Xiu, 2019], ...
- Bounds for LTI systems [Campi et al, 2002], [Vidyasagar et al, 2008], ...

Correction and data-driven closure modeling

- Closure modeling [Chorin, Stinis, 2006], [Oliver, Moser, 2011], [Parish, Duraisamy, 2015], [lliescu et al, 2018, 2019], .
- Higher order dynamic mode decomposition [Le Clainche and Vega, 2017],
[Champion et al., 2018]

Outline

- Introduction and motivation
- Operator inference for learning low-dimensional models
- Sampling Markovian data for recovering reduced models
- Rigorous and pre-asymptotic error estimators
- Learning time delays to go beyond Markovian models
- Conclusions

Oplnf: Fitting low-dim model to trajectories

1. Construct POD (PCA) basis of dimension $n \ll N$

$$
\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right] \in \mathbb{R}^{N \times n}
$$

2. Project state trajectory onto the reduced space

$$
\breve{\boldsymbol{x}}=\boldsymbol{V}^{T} \boldsymbol{X}=\left[\breve{\boldsymbol{x}}_{1}, \cdots, \breve{\boldsymbol{x}}_{K}\right] \in \mathbb{R}^{n \times K}
$$

3. Find operators $\hat{\boldsymbol{A}}_{1}, \ldots, \hat{\boldsymbol{A}}_{\ell}, \hat{\boldsymbol{B}}$ such that

$$
\breve{\boldsymbol{x}}_{k+1} \approx \sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \breve{x}_{k}^{i}+\hat{\boldsymbol{B}} \boldsymbol{u}_{k}, \quad k=0, \cdots, K-1
$$

by minimizing the residual in Euclidean norm

$$
\min _{\hat{\boldsymbol{A}}_{1}, \ldots, \hat{\boldsymbol{A}}_{\ell}, \hat{\boldsymbol{B}}} \sum_{k=0}^{K-1}\left\|\breve{\boldsymbol{x}}_{k+1}-\sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \breve{\boldsymbol{x}}_{k}^{i}-\hat{\boldsymbol{B}} \boldsymbol{u}_{k}\right\|_{2}^{2}
$$

[P., Willcox, Data driven operator inference for nonintrusive projection-based model reduction; Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016]

Oplnf: Learning from projected trajectory

Fitting model to projected states

- We fit model to projected trajectory

$$
\breve{\boldsymbol{x}}=\boldsymbol{V}^{T} \boldsymbol{X}
$$

- Would need $\tilde{\boldsymbol{X}}=\left[\tilde{\boldsymbol{x}}_{1}, \ldots, \tilde{\boldsymbol{x}}_{K}\right]$ because

$$
\sum_{k=0}^{k-1}\left\|\tilde{\boldsymbol{x}}_{k+1}-\sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_{\boldsymbol{i}} \tilde{x}_{k}^{i}-\tilde{\boldsymbol{B}} \boldsymbol{u}_{k}\right\|_{2}^{2}=0
$$

- However, trajectory $\tilde{\boldsymbol{X}}$ unavailable

Thus, $\|\hat{\boldsymbol{f}}-\tilde{\boldsymbol{f}}\|$ small critically depends on $\|\check{\boldsymbol{X}}-\tilde{\boldsymbol{X}}\|$ being small

- Increase dimension n of reduced space to decrease $\|\check{\boldsymbol{X}}-\tilde{\boldsymbol{X}}\|$
\Rightarrow increases degrees of freedom in OpInf \Rightarrow ill-conditioned
- Decrease dimension n to keep number of degrees of freedom low \Rightarrow difference $\|\breve{\boldsymbol{X}}-\tilde{\boldsymbol{X}}\|$ increases

Oplnf: Closure of linear system

Consider autonomous linear system

$$
\boldsymbol{x}_{k+1}=\boldsymbol{A} \boldsymbol{x}_{k}, \quad \boldsymbol{x}_{0} \in \mathbb{R}^{N}, \quad k=0, \ldots, K-1
$$

- Split \mathbb{R}^{N} into $\mathcal{V}=\operatorname{span}(\boldsymbol{V})$ and $\mathcal{V}_{\perp}=\operatorname{span}\left(\boldsymbol{V}_{\perp}\right)$

$$
\mathbb{R}^{N}=\mathcal{V} \oplus \mathcal{V}_{\perp}
$$

- Split state

Represent system as

$$
\boldsymbol{x}_{k}=\boldsymbol{V} \underbrace{\boldsymbol{V}^{T} \boldsymbol{x}_{k}}_{x_{k}^{\|}}+\boldsymbol{V}_{\perp} \underbrace{\boldsymbol{V}_{\perp}^{\top} \boldsymbol{x}_{k}}_{x_{\perp}^{\perp}}
$$

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}^{\|}=\boldsymbol{A}_{11} \boldsymbol{x}_{k}^{\|}+\boldsymbol{A}_{12} \boldsymbol{x}_{k}^{\perp} \\
& \boldsymbol{x}_{k+1}^{\perp}=\boldsymbol{A}_{21} \boldsymbol{x}_{k}^{\|}+\boldsymbol{A}_{22} \boldsymbol{x}_{k}^{\perp}
\end{aligned}
$$

with operators

$$
\boldsymbol{A}_{11}=\underbrace{\boldsymbol{V}^{\top} \boldsymbol{A} \boldsymbol{V}}_{=\tilde{\boldsymbol{A}}}, \quad \boldsymbol{A}_{12}=\boldsymbol{V}^{\top} \boldsymbol{A} \boldsymbol{V}_{\perp}, \boldsymbol{A}_{21}=\boldsymbol{V}_{\perp}^{T} \boldsymbol{A} \boldsymbol{V}, \quad \boldsymbol{A}_{22}=\boldsymbol{V}_{\perp}^{T} \boldsymbol{A} \boldsymbol{V}_{\perp}
$$

Oplnf: Closure term as a non-Markovian term

Projected trajectory $\breve{\boldsymbol{X}}$ mixes dynamics in \mathcal{V} and \mathcal{V}_{\perp}

$$
\boldsymbol{V}^{\top} \boldsymbol{x}_{k+1}=\breve{\boldsymbol{x}}_{k+1}=\boldsymbol{x}_{k+1}^{\|}=\boldsymbol{A}_{11} \boldsymbol{x}_{k}^{\|}+\boldsymbol{A}_{12} \boldsymbol{x}_{k}^{\perp}
$$

Mori-Zwanzig formalism gives [Givon, Kupferman, stuart, 2004], [Chorin, Stinis, 2006]

$$
\begin{aligned}
\boldsymbol{V}^{\top} \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k+1}^{\|} & =\boldsymbol{A}_{11} \boldsymbol{x}_{k}^{\|}+\boldsymbol{A}_{12} \boldsymbol{x}_{k}^{\perp} \\
& =\boldsymbol{A}_{11} \boldsymbol{x}_{k}^{\|}+\sum_{j=1}^{k-1} \boldsymbol{A}_{22}^{k-j-1} \boldsymbol{A}_{21} \boldsymbol{x}_{j}^{\|}+\boldsymbol{A}_{12} \boldsymbol{A}_{22}^{k-1} \boldsymbol{x}_{0}^{\perp}
\end{aligned}
$$

Non-Markovian (memory) term models unobserved dynamics

Outline

- Introduction and motivation
- Operator inference for learning low-dimensional models
- Sampling Markovian data for recovering reduced models
- Rigorous and pre-asymptotic error estimators
- Learning time delays to go beyond Markovian models
- Conclusions

ReProj: Handling non-Markovian dynamics

Ignore non-Markovian dynamics

- Have significant impact on model accuracy (much more than in classical model reduction?)
- Guarantees on models?

Fit models with different forms to capture non-Markovian dynamics

- Length of memory (support of kernel) typically unknown
- Time-delay embedding increase dimension of reduced states, which is what we want to reduce
- Model reduction (theory) mostly considers Markovian reduced models

Our approach: Control length of memory when sampling trajectories

- Set length of memory to 0 for sampling Markovian dynamics
- Increase length of memory in a controlled way (lag is known)
- Modify the sampling scheme, instead of learning step
- Emphasizes importance of generating the "right" data

ReProj: Avoiding closure

Mori-Zwanzig formalism explains projected trajectory as

$$
\boldsymbol{V}^{\top} \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k+1}^{\|}=\underbrace{\boldsymbol{A}_{11} \boldsymbol{x}_{k}^{\|}}_{\text {reduced model }}+\underbrace{\sum_{j=1}^{k-1} \boldsymbol{A}_{22}^{k-j-1} \boldsymbol{A}_{21} \boldsymbol{x}_{j}^{\|}}_{\text {memory }}+\underbrace{\boldsymbol{A}_{12} \boldsymbol{A}_{22}^{k-1} \boldsymbol{x}_{0}^{\perp}}_{\text {noise }}
$$

Sample Markovian dynamics by setting memory and noise to 0

- Set $x_{0} \in \mathcal{V}$, then noise is 0
- Take a single time step, then memory term is 0

Sample trajectory by re-projecting state of previous time step onto \mathcal{V}
Establishes "independence"

ReProj: Sampling with re-projection

Data sampling: Cancel non-Markovian terms via re-projection 1. Project initial condition \boldsymbol{x}_{0} onto \mathcal{V}

$$
\bar{x}_{0}=\boldsymbol{V}^{\top} \boldsymbol{x}_{0}
$$

2. Query high-dim. system for a single time step with $\boldsymbol{V} \overline{\boldsymbol{x}}_{0}$

$$
\boldsymbol{x}_{1}=\boldsymbol{f}\left(\boldsymbol{V} \overline{\boldsymbol{x}}_{0}, \boldsymbol{u}_{0}\right)
$$

3. Re-project to obtain $\overline{\boldsymbol{x}}_{1}=\boldsymbol{V}^{T} \boldsymbol{x}_{1}$
4. Query high-dim. system with re-projected initial condition $\boldsymbol{V} \overline{\mathbf{x}}_{1}$

$$
\boldsymbol{x}_{2}=\boldsymbol{f}\left(\boldsymbol{V} \overline{\boldsymbol{x}}_{1}, \boldsymbol{u}_{1}\right)
$$

5. Repeat until end of time-stepping loop

Obtain trajectories

$$
\overline{\boldsymbol{x}}=\left[\bar{x}_{0}, \ldots, \overline{\boldsymbol{x}}_{K-1}\right], \quad \overline{\boldsymbol{Y}}=\left[\overline{\boldsymbol{x}}_{1}, \ldots, \overline{\boldsymbol{x}}_{K}\right], \quad \boldsymbol{U}=\left[\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{K-1}\right]
$$

[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. arXiv:1908.11233, 2019.]

ReProj: Operator inference with re-projection

Operator inference with re-projected trajectories

$$
\min _{\hat{\boldsymbol{A}}_{1}, \ldots, \hat{\boldsymbol{A}}_{\ell}, \hat{\boldsymbol{B}}}\left\|\overline{\boldsymbol{Y}}-\sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \overline{\boldsymbol{X}}^{i}-\hat{\boldsymbol{B}} \boldsymbol{U}\right\|_{F}^{2}
$$

Theorem (Simplified) Consider time-discrete system with polynomial nonlinear terms of maximal degree ℓ and linear input. If $K \geq \sum_{i=1}^{\ell} n^{i}+2$ and matrix $\left[\overline{\boldsymbol{X}}, \boldsymbol{U}, \overline{\boldsymbol{X}}^{2}, \ldots, \overline{\boldsymbol{X}}^{\ell}\right.$] has full rank, then $\|\overline{\boldsymbol{X}}-\tilde{\boldsymbol{X}}\|=0$ and thus $\hat{\boldsymbol{f}}=\tilde{\boldsymbol{f}}$ in the sense

$$
\left\|\hat{\boldsymbol{A}}_{1}-\tilde{\boldsymbol{A}}_{1}\right\|_{F}=\cdots=\left\|\hat{\boldsymbol{A}}_{\ell}-\tilde{\boldsymbol{A}}_{\ell}\right\|_{F}=\|\tilde{\boldsymbol{B}}-\hat{\boldsymbol{B}}\|_{F}=0
$$

- Pre-asymptotic guarantees, in contrast to learning from projected data
- Re-projection is a nonintrusive operation
- Requires querying high-dim. system twice
- Initial conditions remain "physically meaningful"

Provides a means to find model form
[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. arXiv:1908.11233, 2019.]

ReProj: Queryable systems

Definition: Queryable systems [Uy, P., 2020]
A dynamical system is queryable, if the trajectory $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\right]$ with $K \geq 1$ can be computed for initial condition $x_{0} \in \mathcal{V}$ and feasible input trajectory $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{K}\right]$.

Details about how trajectories computed unnecessary

- Discretization (FEM, FD, FV, etc)
- Time-stepping scheme
- Time-step size
- In particular, neither explicit nor implicit access to operators required

Insufficient to have only data available
gray-box
dynamical
system

- Need to query system at re-projected states
- Similar requirement as for active learning

ReProj: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

ReProj: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

ReProj: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

ReProj: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

ReProj: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

ReProj: Burgers': Operator inference

Error of reduced models at test data

- Inferring operators from projected data fails in this example
- Recover reduced model from re-projected data

ReProj: Burgers': Operator inference

Error of reduced models at test data

- Inferring operators from projected data fails in this example
- Recover reduced model from re-projected data

ReProj: Burgers': Operator inference

Error of reduced models at test data

- Inferring operators from projected data fails in this example
- Recover reduced model from re-projected data

ReProj: Burgers': Recovery

The difference between state trajectories

- Model from intrusive model reduction same as OpInf with re-proj.
- Model learned from state trajectories without re-projection differs

ReProj: Chafee: Chafee-Infante example

Chafee-Infante equation

$$
\frac{\partial}{\partial t} x(\omega, t)+x^{3}(\omega, t)-\frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t)-x(\omega, t)=0
$$

- Boundary conditions as in [Benner et al., 2018]
- Spatial domain $\omega \in[0,1]$
- Time domain $t \in[0,10]$
- Forward Euler with $\delta t=10^{-4}$
- Cubic nonlinear term

Operator inference

- Infer operators from single trajectory corresponding to random inputs
- Test inferred model on oscillatory input

ReProj: Chafee: Recovery

Error of reduced models on test parameters

- Projected data leads to unstable inferred model
- Inference from data with re-projection shows stabler behavior

Outline

- Introduction and motivation
- Ope $\mathrm{PDE} \longrightarrow$| reduced |
| :---: |
| model |\(\longrightarrow \begin{gathered}error

control\end{gathered}\)

- San
- Rig our approach:
pre-asymptotically
- Rig

- Learning time aerays to go Deyona iviarkovian moaets
- Conclusions

Outline

- Introduction and motivation
- Operator inference for learning low-dimensional models
- Sampling Markovian data for recovering reduced models
- Rigorous and pre-asymptotic error estimators
- Learning time delays to go beyond Markovian models
- Conclusions

ErrEst: Error estimation for learned models

Assumptions*: Symmetric asymptotically stable linear system

- If not symmetric, then need to assume $\left\|\boldsymbol{A}_{1}\right\| \leq 1$ (for now...)
- Derive reduced model with operator inference and re-projection
- Requires full residual of reduced-model states in training phase

Error estimation based on [Haasdonk, Ohlberger, 2009]

- Residual at time step k

$$
\boldsymbol{r}_{k}=\boldsymbol{A}_{1} \boldsymbol{V} \hat{\mathbf{x}}_{k}+\boldsymbol{B} u_{k}-\boldsymbol{V} \hat{\mathbf{x}}_{k+1}
$$

- Bound on state error if initial condition in $\operatorname{span}\{\boldsymbol{V}\}$

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{V} \hat{\boldsymbol{x}}_{k}\right\|_{2} \leq C_{1}\left(\sum_{i=1}^{k-1}\left\|\boldsymbol{r}_{k}\right\|_{2}\right)
$$

- Offline/online splitting of computing residual norm $\left\|\boldsymbol{r}_{k}\right\|_{2}$

$$
\begin{aligned}
&\left\|\boldsymbol{r}_{k}\right\|_{2}^{2}= \hat{\boldsymbol{x}}_{k}^{T} \\
& \underbrace{\boldsymbol{V}^{T} \boldsymbol{A}_{1}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M}_{1}} \hat{\boldsymbol{x}}_{k}+u_{k} \underbrace{\boldsymbol{B}^{T} \boldsymbol{B}}_{\boldsymbol{M}_{\mathbf{2}}} u_{k}+\hat{\boldsymbol{x}}_{k+1} \boldsymbol{V}^{T} \boldsymbol{V} \hat{\mathbf{x}}_{k+1} \\
&+2 u_{k}^{T} \underbrace{\boldsymbol{B}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M}_{\mathbf{3}}} \hat{\boldsymbol{x}}_{k}-2 \hat{\mathbf{x}}_{k+1}^{T} \hat{\boldsymbol{A}}_{1} \hat{\boldsymbol{x}}_{k+1}-2 \hat{\mathbf{x}}_{k+1} \hat{\boldsymbol{B}} u_{k}
\end{aligned}
$$

ErrEst: Learning error operators from data

From [Haasdonk, Ohlberger, 2009] have

$$
\begin{aligned}
&\left\|\boldsymbol{r}_{k}\right\|_{2}^{2}= \hat{\boldsymbol{x}}_{k}^{T} \\
& \underbrace{\boldsymbol{v}^{\top} \boldsymbol{A}_{1}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M}_{\mathbf{1}}} \hat{\boldsymbol{x}}_{k}+u_{k} \underbrace{\boldsymbol{B}^{T} \boldsymbol{B}}_{\boldsymbol{M}_{\mathbf{2}}} u_{k}+\hat{\boldsymbol{x}}_{k+1} \boldsymbol{V}^{\top} \boldsymbol{V} \hat{\boldsymbol{x}}_{k+1} \\
&+2 u_{k}^{T} \underbrace{\boldsymbol{B}^{T} \boldsymbol{A}_{1} \boldsymbol{V}}_{\boldsymbol{M}_{\mathbf{3}}} \hat{\boldsymbol{x}}_{k}-2 \hat{\boldsymbol{x}}_{k+1}^{T} \hat{\boldsymbol{A}}_{1} \hat{\boldsymbol{x}}_{k+1}-2 \hat{\boldsymbol{x}}_{k+1} \hat{\boldsymbol{B}} u_{k}
\end{aligned}
$$

Query system at training inputs to compute residual trajectories

$$
\boldsymbol{R}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{r}_{1} & \boldsymbol{r}_{2} & \ldots & \boldsymbol{r}_{K} \\
\mid & \mid & & \mid
\end{array}\right]
$$

Learn quantities M_{1}, M_{2}, M_{3} via operator inference

- Fit error operators $\boldsymbol{M}_{1}, \boldsymbol{M}_{2}, \boldsymbol{M}_{3}$ to residual trajectories
- Bound constant C_{1} and constants for output error

Obtain certified reduced models from data alone

ErrEst: Convection-diffusion in a pipe

Governed by parabolic PDE

$$
\begin{array}{rlrl}
\frac{\partial x}{\partial t} & =\Delta x-(1,1) \cdot \nabla x, & & \text { in } \Omega \\
x & =0, & \Gamma \backslash\left\{E_{i}\right\}_{i=1}^{5} \\
\nabla x \cdot \mathbf{n} & =g_{i}(t), & & \text { in } E_{i}
\end{array}
$$

- Discretize with finite elements
- Degrees of freedom $N=1121$
- Forward Euler method $\delta t=10^{-5}$
- End time is $T=0.5$

Input signals

- Training signal is sinusoidal
- Test signal is exponentially decaying sinusoidal with different frequency than
 training

ErrEst: Recovering reduced models from data

Recover reduced models from data

- Error averaged over time
- Recover reduced model up to numerical errors

ErrEst: Error bounds

Learn certified reduced model from data alone

- Train with sinusoidal and test with exponential input
- Infer quantities from residual of full model (offline/training)
- Estimate error for test inputs

Outline

- Introduction and motivation
- OPE $\mathrm{PDE} \longrightarrow$| reduced |
| :---: |
| model |\(\longrightarrow \begin{gathered}error

control\end{gathered}\)

- San
- Rig
our approach:
pre-asymptotically
guaranteed

- Learning time aerays to go Deyona iviarkovian moaets
- Conclusions

Outline

- Introduction and motivation

- Conclusions

NonM: Non-Markovian reduced models

Learning non-Markovian low-dim. models in model reduction

- (Full model is non-Markovian [Schulze, Unger, Beattie, Gugercin, 2018])
- Closure error is high and needs to be corrected (steep gradients, shocks)
- Only partially observed state trajectory available

NonM: Learning non-Markovian reduced models

With re-projection, exactly learn Markovian reduced model

$$
\tilde{\boldsymbol{x}}_{k+1}=\sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_{i} \tilde{\boldsymbol{x}}_{k}^{i}+\tilde{\boldsymbol{B}} \boldsymbol{u}_{k}
$$

However, loose dynamics modeled by non-Markovian terms

$$
\breve{\boldsymbol{x}}_{k+1}=\sum_{i=1}^{\ell} \tilde{\boldsymbol{A}}_{i} \breve{\boldsymbol{x}}_{k}^{i}+\tilde{\boldsymbol{B}} \boldsymbol{u}_{k}+\sum_{i=1}^{k-1} \boldsymbol{\Delta}_{i}\left(\breve{\boldsymbol{x}}_{k-1}, \ldots, \breve{\boldsymbol{x}}_{k-i+1}, \boldsymbol{u}_{k}, \ldots, \boldsymbol{u}_{k-i+1}\right)+0
$$

Learn unresolved dynamics via approximate non-Markovian terms

$$
\hat{\boldsymbol{x}}_{k+1}=\sum_{i=1}^{\ell} \hat{\boldsymbol{A}}_{i} \hat{\boldsymbol{x}}_{k}^{i}+\hat{\boldsymbol{B}} \boldsymbol{u}_{k}+\sum_{i=1}^{k-1} \hat{\boldsymbol{\Delta}}_{i}^{\boldsymbol{\theta}_{i}}\left(\hat{\boldsymbol{x}}_{k-1}, \ldots, \hat{\boldsymbol{x}}_{k-i+1}, \boldsymbol{u}_{k}, \ldots, \boldsymbol{u}_{k-i+1}\right)
$$

- Parametrization $\boldsymbol{\theta}_{i} \in \Theta$ for $i=0, \ldots, K-1$
- Non-Markovian models extensively used in statistics but less so in MOR

NonM: Sampling with stage-wise re-projection

Learning model operators and non-Markovian terms at the same \Rightarrow Dynamics mixed, same issues as learning from projected states Build on re-projection to learn non-Markovian terms stage-wise

- Sample trajectories of length $r+1$ with re-projection

$$
\overline{\boldsymbol{X}}^{(0)}, \ldots, \overline{\boldsymbol{X}}^{(k-1)} \in \mathbb{R}^{n \times r+1}
$$

- Infer Markovian reduced model $\hat{\boldsymbol{f}}_{1}$ from one-step trajectories

$$
\overline{\boldsymbol{X}}_{1}^{(i)}=\left[\overline{\boldsymbol{x}}_{0}^{(i)}, \overline{\boldsymbol{x}}_{1}^{(i)}\right], \quad i=0, \ldots, K-1
$$

- Simulate $\hat{\boldsymbol{f}}_{1}$ to obtain

$$
\hat{\boldsymbol{x}}_{2}^{(i)}=\left[\hat{\mathbf{x}}_{0}^{(i)}, \hat{\mathbf{x}}_{1}^{(i)}, \hat{\mathbf{x}}_{2}^{(i)}\right], \quad i=0, \ldots, K-1
$$

- Fit parameter $\boldsymbol{\theta}_{1}$ of non-Markovian term $\hat{\boldsymbol{\Delta}}_{1}^{\theta_{1}}$ to difference

$$
\min _{\boldsymbol{\theta}_{\mathbf{1}} \in \Theta} \sum_{i=0}^{K-1}\left\|\overline{\boldsymbol{x}}_{2}^{(i)}-\hat{\boldsymbol{x}}_{2}^{(i)}-\hat{\boldsymbol{\Delta}}_{1}^{\left(\theta_{\mathbf{1}}\right)}\left(\overline{\boldsymbol{x}}_{0}^{(i)}, \boldsymbol{u}_{i}\right)\right\|_{2}^{2}
$$

- Repeat this r times to learn $\hat{\boldsymbol{f}}_{r}$ with lag r

NonM: Learning non-Markovian terms

Parametrization of non-Markovian terms

- Set $\boldsymbol{\theta}_{i}=\left[\boldsymbol{D}_{i}, \boldsymbol{E}_{i}\right]$ with $\boldsymbol{D}_{i} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{E}_{i} \in \mathbb{R}^{n \times p}$
- Non-Markovian term is

$$
\hat{\boldsymbol{\Delta}}_{i}^{\left(\boldsymbol{\theta}_{i}\right)}\left(\hat{\boldsymbol{x}}_{k-1}, \ldots, \hat{\boldsymbol{x}}_{k-i+1}, \boldsymbol{u}_{k}, \ldots, \boldsymbol{u}_{k-i+1}\right)=\boldsymbol{D}_{i} \hat{\boldsymbol{x}}_{k-i+1}+\boldsymbol{E}_{i} \boldsymbol{u}_{k-i+1}
$$

- Other parametrizations with higher-order terms and neural networks

Choosing maximal lag

- Assumption (observation) is that non-Markovian term of system has small support
- Need to go back in time only a few steps
- Lag r can be chosen small

NonM: Learning from partially observed states

Partially observed state trajectories

- Unknown selection operator $\boldsymbol{S} \in\{0,1\}^{N_{s} \times N}$ with $N_{s}<N$ and

$$
z_{k}=\boldsymbol{S} \boldsymbol{x}_{k}
$$

- Learn models from trajectory

$$
\begin{aligned}
& \boldsymbol{Z}=\left[z_{0}, \ldots, \boldsymbol{z}_{K-1}\right] \text { instead } \\
& \text { of } \boldsymbol{X}=\left[\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{K-1}\right]
\end{aligned}
$$

- Apply POD (PCA) to \boldsymbol{Z} to find basis matrix \boldsymbol{V} of subspace \mathcal{V} of $\mathbb{R}^{N_{s}}$

Non-Markovian terms to compensate unobserved state components

- Mori-Zwanzig formalism applies
- Non-Markovian terms compensate unobserved components

NonM: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

NonM: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

NonM: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

NonM: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in $[0.1,1]$
- Interpolate inferred operators at 7 test parameters and predict

NonM: Burgers': Burgers' example

Viscous Burgers' equation

$$
\frac{\partial}{\partial t} x(\omega, t ; \mu)+x(\omega, t ; \mu) \frac{\partial}{\partial \omega} x(\omega, t ; \mu)-\mu \frac{\partial^{2}}{\partial \omega^{2}} x(\omega, t ; \mu)=0
$$

- Spatial, time, and parameter domain

$$
\omega \in[0,1], \quad t \in[0,1], \quad \mu \in[0.1,1]
$$

- Dirichlet boundary conditions

$$
x(0, t ; \mu)=-x(1, t ; \mu)=u(t)
$$

- Discretize with forward Euler
- Time step size is $\delta t=10^{-4}$

Operator inference

- Training data are 2 trajectories with random inputs
- Infer operators for 10 equidistant parameters in [0.1, 1]
- Interpolate inferred operators at 7 test parameters and predict

NonM: Burgers': Partial observations

Observe only about 50% of all state components

- Linear time-delay terms with stage-wise re-projection
- Reduces error of inferred model by more than one order of magnitude

NonM: Burgers': Shock formation

(a) ground truth (full model)

(b) intrusive model reduction

Modify coefficients of Burgers' equation to obtain solution with shock

- Solutions with shocks are challenging to reduce with model reduction
- Here, reduced model from intrusive model reduction has oscillatory error

NonM: Burgers': Capturing shock position

Learn time-delay terms stage-wise with (re-)re-projection

- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

NonM: Burgers': Capturing shock position

Learn time-delay terms stage-wise with (re-)re-projection

- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

NonM: Burgers': Capturing shock position

Learn time-delay terms stage-wise with (re-)re-projection

- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

NonM: Burgers': Capturing shock position

Learn time-delay terms stage-wise with (re-)re-projection

- Learn linear time-delay corrections
- In this example, time delay of order 4 sufficient to capture shock
- Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

Conclusions

Learning dynamical-system models from data with error guarantees

- Operator inference exactly recovers reduced models from data
- Generating the right data is key to learning reduced models in our case
- Pre-asymptotic guarantees (finite data) under certain conditions
- Going beyond reduced models by learning non-Markovian corrections

References: https://cims.nyu.edu/~pehersto

- Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial differential equations with control inputs, in preparation, 2020.
- P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. arXiv:1908.11233, 2019.
- P., Willcox, Data-driven operator inference for nonintrusive projection-based model reduction. Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016.

