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Recovering reduced models from data

PDE
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Learn low-dimensional model from data of dynamical system

e Interpretable

e System & control theory

e Fast predictions

e Guarantees for finite data

Learn reduced model from trajectories of high-dim. system

e Recover exactly and pre-asymptotically reduced models from data

e Then build on rich theory of model reduction to establish error control
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Intro: Polynomial nonlinear terms

Models with polynomial nonlinear terms

S x(t 1) =F(x(t: ), u(): 1)
4
=3 At 1) + Bluur)

i=

-

Polynomial degree ¢ € N .
Kronecker product x/(t; u) = ®J'-:1 x(t; )
Operators A;(p) € RV*N for j=1,... ¢
Input operator B(u) € RV*P

Lifting and transformations
e Lift general nonlinear systems to quadratic-bilinear ones [cu, 2011, [Benner,
Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox,
2019], [Qian, Kramer, P., Willcox, 2019]
e Koopman lifts nonlinear systems to infinite linear systems [rRowley <t al, 2009],

[Schmid, 2010]
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Intro: Beyond polynomial terms (nonintrusive)

arXiv.org > math > arXiv:1912.08177
Holp | Advanced Search
Mathematics > Numerical Analysis Download:
Lift & Learn: Physics-informed machine learning for large-scale nonlinear « PDF
dynamical systems + Other formats
Elizabeth Qian, Boris Kramer, Benjamin Peherstorfer, Karen Willcox Current browse context:
math.NA

(Submitted on 17 Dec 2019 (v1). last revised 23 Dec 2019 (this version, v2))
<prev | next>
We present Lift & Learn, a physics-informed method for learning low-dimensional models for large-scale dynamical systems. The method new | recent | 1912

exploits knowledge of a system's governing equations to identify a coordinate transformation in which the system dynamics have quadratic Change to browse by:

structure. This transformation is called a lifing map because it often adds auxiliary variables to the system state. The lifting map is applied to s

data obtained by evaluating a model for the original nonlinear system. This lfted data is projected onto its leading principal components, and s1G

low-dimensional linear and quadratic matrix operators are fit to the lifted reduced data using a least-squares operator inference procedure. ety NA

Analysis of our method shows that the Lift & Learn models are able to capture the system physics in the lifted coordinates at least as

accurately as traditional intrusive model reduction approaches. This preservation of system physics makes the Lift & Leam models robust to References & Citations
« NASAADS

changes in inputs. Numerical experiments on the FitzHugh-Nagumo neuron activation model and the compressible Euler equations

demonstrate the generalizability of our model. Export citation
Google Scholar
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Operator inference for non-intrusive model reduction of non-polynomial nonlinear
systems
Boris Kramer, University of California San Diego

We present a data-driven non-intrusive model reduction method that learns low-

1 models of d. ical sy with non-polynomial nonlinear terms that are
spatially local and that are given in analytic form. The proposed approach requires only the
non-polynomial terms in analytic form and learns the rest of the dynamics from snapshots
computed with a potentially black-box full-model solver. The linear and polynomially
nonlinear dynamics are learned by solving a linear least-squares problem where the
analytically given non-polynomial terms are incorporated in the right-hand side of the
least-squares problem. The resulting ROM thus contains learned polynomial operators
together with the analytic form of the non-polynomial nonlinearity. The proposed method
is demonstrated on several test problems which provides evidence that the proposed
approach learns reduced models that achieve comparable accuracy as state-of-the-art
intrusive model reduction methods that require full knowledge of the governing equations.
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Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

%x(t; w) =F(x(t; p), u(t); p)

Parameters
e Infer models f(-,; ty), ..., F(,-; pp,) at parameters

le")”MEID

e For new p € D, interpolate operators of [amsallem <t al., 2008], [Degroote et al., 2010]

A N

F(pa), - F ()

Trajectories
X =[x1,...,xx] € RVN*K

U=uy,...,ug] e RP*K
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Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

©x(t) =F(x(2) u()
¢
= Aix(t) + Bu(t)
i=1
Parameters
o Infer models F(-,; ptq), ..., F(-,; ) at parameters

le")”MEID

e For new p € D, interpolate operators of [amsallem <t al., 2008], [Degroote et al., 2010]
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Intro: Parametrized systems

Consider time-invariant system with polynomial nonlinear terms

xk+1::f(xk,uk)
0
:ZAIX;(+Buk7 k:07...,K_1

i=1

Parameters
e Infer models f(-,; ty), ..., F(,-; ppy) at parameters

le")”MEID

e For new p € D, interpolate operators of [amsallem <t al., 2008], [Degroote et al., 2010]

A N

F(pa), - F ()

Trajectories
X =[x1,...,xx] € RV*K
U=uy,...,ug] e RP*K
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Intro: Classical (intrusive) model reduction

Given full model f, construct reduced f via projection

1. Construct n-dim. basis V = [vy,...,v,] € RVx"
e Proper orthogonal decomposition (POD)
e Interpolatory model reduction
e Reduced basis method (RBM), ...

2. Project full-model operators A, ..., A;, B onto reduced space, e.g.,
Nx N Nxp
A=V''A (Vo---aV) B=v''B
i — i e ) - ,
nxni nxp

3. Construct reduced model

¢
)~(k+12?()~(k,uk)2274;5‘(;;+éuk, k=0,....,.K—-1
i=1
with n < N and || VX, — x,|| small in appropriate norm

[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]
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Our approach: Learn reduced models from data

Sample (gray-box) high-dimensional system with inputs

U= [uo . uK_1] initial condition
inputs

to obtain trajectory

gray-box

| dynamical
system

state trajectory
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Intro: Literature overview
System identification [Ljung, 1987], [Viberg, 1995], [Kramer, Gugercin, 2016], ...

Learning in frequency domain [Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010],
[Antoulas, 2016], [Gustavsen, Semlyen, 1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea,
lonita, 2016], [Gosea, Antoulas, 2018], [Benner, Goyal, Van Dooren, 2019], ...

Learning from time-domain data (output and state trajectories)
e Time series analysis (V)AR models, [Box et al., 2015], [Aicher et al., 2018, 2019], ...
e Learning models with dynamic mode decomposition [Schmid et al., 2008],
[Rowley et al., 2009], [Proctor, Brunton, Kutz, 2016], [Benner, Himpe, Mitchell, 2018], ...
Sparse identification [Brunton, Proctor, Kutz, 2016], [Schaeffer et al, 2017, 2018], ...
Deep networks [Raissi, Perdikaris, Karniadakis, 2017ab], [Qin, Wu, Xiu, 2019], ...
e Bounds for LTI systems [Campi et al, 2002], [Vidyasagar et al, 2008], ...

Correction and data-driven closure modeling

e Closure modeling [Chorin, Stinis, 2006], [Oliver, Moser, 2011], [Parish, Duraisamy,
2015], [lliescu et al, 2018, 2019], ...

e Higher order dynamic mode decomposition [Le Clainche and Vega, 2017],
[Champion et al., 2018]
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Outline

e Introduction and motivation

e Operator inference for learning low-dimensional models

Sampling Markovian data for recovering reduced models

Rigorous and pre-asymptotic error estimators

Learning time delays to go beyond Markovian models

Conclusions
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Oplnf: Fitting low-dim model to trajectories
1. Construct POD (PCA) basis of dimension n < N
V =[vy, - ,v,] € RV*"
2. Project state trajectory onto the reduced space
X=V'X=[x, -, xx] e R"*K

3. Find operators A, ..., A, B such that

by minimizing the residual in Euclidean norm

K—1 ¢ 2
min E Xk+1 — E A,)U(;( — Bu;<
Ai,AB | T i1 5
[P., Willcox, Data driven operator inference for nonintrusive projection-based model red C Methods in

Applied Mechanics and Engineering, 306:196-215, 2016]
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Oplnf: Learning from projected trajectory

Fitting model to projected states
e We fit model to projected trajectory

1.6

1.2+

projected - |
int. model reduction -e- |
Oplnf (w/out re-proj)

e Would need X = [X1,...,Xk] because 05

N

2-norm of states

K1 . 2 0.6 |
Z ik+1_zAi5’(;(_Buk =0 0.4+
k=0 i=1 2 O'é [
. ~ . 0 10 20 30 40 50 60 70 80 90 100
e However, trajectory X unavailable time step k

Thus, ||f — f|| small critically depends on || X — X|| being small
e Increase dimension n of reduced space to decrease || X — X||
= increases degrees of freedom in Oplnf = ill-conditioned
e Decrease dimension n to keep number of degrees of freedom low
= difference || X — X|| increases
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Oplnf: Closure of linear system

Consider autonomous linear system

Xk+1 = Axk, xoeRY, k=0,...,K-1

e Split R into V = span(V) and V, = span(V )

RVN=vaV,
e Split state
x,=V VTXk +V VIXk
N—— N——
Represent system as x| i

m _ I 1
Xpi1 —Allxk + A12Xk

X1 :A21XE + Axpxj
with operators
An=V'AV, A,=V'AV, A, =VIAV,

=A

[Given, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006] [Parish, Duraisamy, 2017]

An =V AV,
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Oplnf: Closure term as a non-Markovian term

Projected trajectory X mixes dynamics in V and V|

T v
V' X1 = X1 = X = Annxy, + Apxi

Mori-Zwanzig formalism gives [civen, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006]

T [ l
v Xk+1 = Xk+1 —A11X + A12Xk

:A11X JrZAk > 1/‘\21XH+14\12A22 X
j=1

Non-Markovian (memory) term models unobserved dynamics

2.50e-03

2.00e-03

1.50e-03

1.00e-03

5.00e-04

norm of closure term

O

0.00e+00
200 400 600 800 1000

time step 13/41
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ReProj: Handling non-Markovian dynamics

Ignore non-Markovian dynamics

e Have significant impact on model accuracy (much more than in classical
model reduction?)

e Guarantees on models?

Fit models with different forms to capture non-Markovian dynamics
e Length of memory (support of kernel) typically unknown

e Time-delay embedding increase dimension of reduced states, which is
what we want to reduce

e Model reduction (theory) mostly considers Markovian reduced models

Our approach: Control length of memory when sampling trajectories
e Set length of memory to 0 for sampling Markovian dynamics
e Increase length of memory in a controlled way (lag is known)
e Modify the sampling scheme, instead of learning step
e Emphasizes importance of generating the “right” data
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ReProj: Avoiding closure

Mori-Zwanzig formalism explains projected trajectory as

k—1
T k—j—1 1
V' X1 = XLl = A11Xk + E A, 4™ A21XH + A ALy xd
—— —_—

j=1

reduced model noise

memory

Sample Markovian dynamics by setting memory and noise to 0
e Set xo € V, then noise is 0
e Take a single time step, then memory term is 0

Sample trajectory by re-projecting state of previous time step onto V

Establishes “independence”
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ReProj: Sampling with re-projection
Data sampling: Cancel non-Markovian terms via re-projection
1. Project initial condition xo onto V
X0 = VTxo
2. Query high-dim. system for a single time step with Vg
x1 = F(VXo, up)

3. Re-project to obtain %; = V' x;
4. Query high-dim. system with re-projected initial condition Vx1

Xo = f-(\/)_(l7 Ul)

5. Repeat until end of time-stepping loop

Obtain trajectories

)_(:[)_(0,...,)_(;(_1], \_/:[)_(1,...,)_(;(], U=["07--~7UK—1]

[P, s ling | i ional Markovian dy ics for pr ymptotically recovering reduced models from data with
operator inference. arXiv:1908.11233, 2019.]
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ReProj: Operator inference with re-projection

Operator inference with re-projected trajectories
¢

Theorem (Simplified) Consider time-discrete system with polynomial
nonlinear terms of maximal degree ¢ and linear input. If K > Zle n' 42

and matrix [X, U, X 7)—(12] has full rank, then | X — X|| = 0 and thus
f = f in the sense

|A; — Asllp=---=|A — Allr =B - B|r=0

Pre-asymptotic guarantees, in contrast to learning from projected data
Re-projection is a nonintrusive operation

Requires querying high-dim. system twice

Initial conditions remain “physically meaningful”

F

Provides a means to find model form

[P, s ling | di ional Markovian dy ics for pr ymptotically recovering reduced models from data with
operator inference. arXiv:1908.11233, 2019.]
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ReProj: Queryable systems
Definition: Queryable systems [Uy, P., 2020]

A dynamical system is queryable, if the trajectory
X =[x1,...,xk] with K > 1 can be computed for
initial condition xq € V and feasible input trajectory
U= [ul,...,uK].

Details about how trajectories computed unnecessary

Discretization (FEM, FD, FV, etc)

Time-stepping scheme

e Time-step size
In particular, neither explicit nor implicit access to
operators required

Insufficient to have only data available
e Need to query system at re-projected states

e Similar requirement as for active learning

initial condition
inputs

gray-box

dynamical
system

state trajectory
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ReProj: Burgers': Burgers' example

Viscous Burgers’ equation

D e t1) X 1) 50) = i ) = O
—x(w, t; x(w, t; ) =—x(w, t; ) — p=—=x(w, t; u) =
o<l i D 1= Hg 3 H
e Spatial, time, and parameter domain time step 1000
wel0,1], te]0,1], wpe]0.1,1]

e Dirichlet boundary conditions .,

x(0,t;p) = —x(1, t; ) = u(t) m
e Discretize with forward Euler
o Time step size is 5t = 1074 0@ SZ;L| p e

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]

e Interpolate inferred operators at 7 test parameters and predict
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ReProj: Burgers’': Operator inference

; ; ; ; ;
intrusive model reduction ©-

1e-01

._.
?

o
)

avg rel error of states (1)

._
¢

o
o)

2 4 6 8 10 12 14

dimension n

Error of reduced models at test data
e Inferring operators from projected data fails in this example

e Recover reduced model from re-projected data
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ReProj: Burgers’': Operator inference

le+01 \ . . : :
intrusive model reduction ©-
= Oplnf, w/out re-proj
g le+00 ::\ 5
3 =
(2]
“
°  1le01 } 4
e
)
£ 1e02 t
50
>
(3]
1e_03 L L L L L L L )

2 4 6 8 10 12 14

dimension n
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ReProj: Burgers’': Operator inference

le+01 \ \ \ \ :
intrusive model reduction ©-
= Oplnf, w/out re-proj
8 1e+00 Oplnf, re-proj =«
(3]
%
“
°  1le01 }
e
)
£ 1e02 |
50
>
(3]
1e-03

dimension n

Error of reduced models at test data
e Inferring operators from projected data fails in this example
e Recover reduced model from re-projected data
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ReProj: Burge

le+02

1le+00
le-02
le-04
1le-06
1e-08
le-10
le-12 ’

difference (2)

rs’: Recovery

3 w/out re-proj 5

re-proj =%

2 4 6 8 100 12 14

dimension n

The difference between state trajectories

e Model from intrusive model reduction same as Oplnf with re-proj.

e Model learned from state trajectories without re-projection differs
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ReProj: Chafee: Chafee-Infante example

Chafee-Infante equation

0 3 0?
—x(w, t) + x7(w,t) — =—5x(w,t) — x(w,t) =0
Sox(w,8) 463w, 1) = o x(w,8) = x(w, )
2
18
e Boundary conditions as in [Benner et al., 2018] }2
e Spatial domain w € [0, 1] él?
e Time domain t € [0, 10] 308
0.6
e Forward Euler with 5t = 10~* 0.4
e Cubic nonlinear term 0'3
0 2 4 6 8 10
time [s]

Operator inference
e Infer operators from single trajectory corresponding to random inputs
e Test inferred model on oscillatory input
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ReProj: Chafee: Recovery

1le+00

1le-01

1e-02

test error (3)

¢ Oplnf, re-proj
Oplnf, w/out re-proj
©- intrusive model reduction

4 6 8 10 12

dimension n

1e-03

le-04

Error of reduced models on test parameters
e Projected data leads to unstable inferred model
e Inference from data with re-projection shows stabler behavior
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ErrEst: Error estimation for learned models

Assumptions®: Symmetric asymptotically stable linear system
e If not symmetric, then need to assume ||A1]] < 1 (for now...)
e Derive reduced model with operator inference and re-projection
e Requires full residual of reduced-model states in training phase

Error estimation based on [Haasdonk, Ohlberger, 2009]
e Residual at time step k

ry = A1V)?k + BUk — V)A(k_‘_l

e Bound on state error if initial condition in span{V}

k—1
[xk = VRil2 < G (Z |fk||2>

i=1
o Offline/online splitting of computing residual norm ||ry/|2
~T ~ ~ ~
Irell3 =%] VTAT ALV %+ us BB ug + %41V VR
—_——— S~—~—
M, M-
T RpT o oT Ao -
+2u, B ALV X — 2%, 1 A1 Xpq1 — 2% 1 Buy
——

Ms;
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ErrEst: Learning error operators from data

From [Haasdonk, Ohlberger, 2009] have
||I’k||§ :)A(Z— VTAIA;[V)A(;( —+ Uy BTB Uy + )A(k+1 VTV)?k+1
—_—— ~—~—
M,y M
+2u] BTALV %) — 28] 1 A1Ri 11 — 2841 Buy
———
M3

Query system at training inputs to compute residual trajectories

Learn quantities M1, M,, M3 via operator inference
e Fit error operators M1, M, M3 to residual trajectories
e Bound constant C; and constants for output error

Obtain certified reduced models from data alone

[Uy, P., Pre-asymptotic error b ds for low-di ional models learned from systems governed by linear parabolic partial

differential equations with control inputs, in preparation, 2020]
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ErrEst: Convection-diffusion in a pipe

Governed by parabolic PDE
Ox

a:Axf(1,1)~Vx, in Q
x =0, M{E}
Vx-n=g(t), in E

Discretize with finite elements
Degrees of freedom N = 1121
Forward Euler method 6t = 10>
e End timeis T = 0.5

Input signals
e Training signal is sinusoidal

e Test signal is exponentially decaying
sinusoidal with different frequency than
training

0.3 190 Es By
0.2
> 1 (z,y) € Q E;
0 2 )2
0.1
0 05 1
X
t=04
0.1

0.05

0.2
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ErrEst: Recovering reduced models from data

1le-05
intrusive =

% 1e-06 | Oplnf, re-proj ==
i
°  1e07 i
o
o
o, 1e-08 ¢ e
K
:%0 le-09 | .

le-10 ‘ ‘ ‘ ‘ ‘

0 2 4 6 8 10 12 14 16 18

basis dimension

Recover reduced models from data
e Error averaged over time

e Recover reduced model up to numerical errors
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ErrEst: Error bounds

1e-02 : : ;
. € Oplnf, err ==
e 1le03 Oplnf, bound :
= intrusive, bound
5 le-04 ¢ E
3
g 1e-05 t 3
; 1e-06 - 3
£ 1e07 L 1
g 1e08 | :
(3]
5 1e09 | :
le-10 ‘ ‘ ‘ :

0 2 4 6 8 10 12 14 16 18

basis dimension

Learn certified reduced model from data alone
e Train with sinusoidal and test with exponential input
o Infer quantities from residual of full model (offline/training)
e Estimate error for test inputs
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NonM: Non-Markovian reduced models

high-dim. high-dim. high-dim.
model trajectories trajectories
assembleJ/ cunstructJ/ lCOIlStrlltt
high-dim. i
reduced space reduced space
operators

0104 1
projec (Markovian)

reduced model

Non-Markovian
reduced model

Learning non-Markovian low-dim. models in model reduction
e (Full model is non-Markovian [Schulze, Unger, Beattie, Gugercin, 2018])
e Closure error is high and needs to be corrected (steep gradients, shocks)

e Only partially observed state trajectory available
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NonM: Learning non-Markovian reduced models

With re-projection, exactly learn Markovian reduced model

However, loose dynamics modeled by non-Markovian terms

¢ k—
Xpp1 = E A;x E i(Xk—1y ooy Xp—ip1, Ugy oo Uk—j1) + 0

i=1

Learn unresolved dynamics via approximate non-Markovian terms
k=1
Xpy1 = E A%+ Buy + E D (X1, Xp—j 1, Uky oy Ug—jy1)
i=1

e Parametrization §; € © for i =0,..., K -1

e Non-Markovian models extensively used in statistics but less so in MOR
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NonM: Sampling with stage-wise re-projection
Learning model operators and non-Markovian terms at the same
= Dynamics mixed, same issues as learning from projected states

Build on re-projection to learn non-Markovian terms stage-wise
e Sample trajectories of length r 4+ 1 with re-projection

)-((0), o )-((K—l) € RXrHL

Infer Markovian reduced model f; from one-step trajectories

X0 =z 20 =0, K-1

Simulate fl to obtain

X0 =g9,20291, i=o0,... K-1

: _ ~ 0 )
o Fit parameter 6; of non-Markovian term A" to difference

i ( 1)
min anz - Ay (x5 w3

Repeat this r times to learn f, with lag r
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NonM: Learning non-Markovian terms

Parametrization of non-Markovian terms
e Set 0, = [D,‘, E,'] with D; € R"*" and E; € R"*P
o Non-Markovian term is

Agef)

~

(Xk—1s ey Rb—ig 1, Ukey - oo U—ip1) = DiXpe_jy1 + Eiuge_jya

e Other parametrizations with higher-order terms and neural networks

Choosing maximal lag : 2.0e-04
e Assumption (observation) is that é 1.5e-04 |
non-Markovian term of system é Loeoa |
has small support 5
e Need to go back in time only a few steps § 50e05
e Lag r can be chosen small 0.06-400

200 400 600 800 1000
time steps
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NonM: Learning from partially observed states

Partially observed state trajectories

e Unknown selection operator
S € {0, 1}M%*N with Ny < N and

Dhigh-dimensional T TTTTTTTTTTITIRTTS
zk:SXk 1 states

o Learn models from trajectory  pautially observed
. states
Z = [zp,...,2zK—1] instead
of X =[xo0,...,XKk_1]

e Apply POD (PCA) to Z to find basis
matrix V of subspace V of R

Non-Markovian terms to compensate unobserved state components
e Mori-Zwanzig formalism applies

e Non-Markovian terms compensate unobserved components
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NonM: Burgers’: Burgers’' example

Viscous Burgers’ equation

D e t1) X 1) 50) = i ) = O
—x(w, t; x(w, t; ) =—x(w, t; ) — p=—=x(w, t; u) =
o<l i D 1= Hg 3 H
e Spatial, time, and parameter domain time step 1000
wel0,1], te]0,1], wpe]0.1,1]

e Dirichlet boundary conditions .,

x(0,t;p) = —x(1, t; ) = u(t) m
e Discretize with forward Euler
o Time step size is 5t = 1074 0@ SZ;L| p e

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]

e Interpolate inferred operators at 7 test parameters and predict
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82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 3000
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® 1t
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e Discretize with forward Euler 8% :
e Time step size is 6t = 104 0 02 04 06 08 1

spatial domain
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Viscous Burgers’ equation
82

0 3}
ax(w, tp) + x(w, t; ,u)a—wx(w7 t ) — ,uwx(w7 t;u)=0

Spatial, time, and parameter domain

time step 9000

wel0,1], te[o,1], upel0.1,1] i3]
e Dirichlet boundary conditions . L2 ]
® 1t
x(0,t;p) = —x(1, t; ) = u(t) ’ oo
e Discretize with forward Euler 8% :
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spatial domain

Operator inference
e Training data are 2 trajectories with random inputs
e Infer operators for 10 equidistant parameters in [0.1,1]
e Interpolate inferred operators at 7 test parameters and predict
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NonM: Burgers’': Partial observations

intrusive model reduction = =
projection
inferred model ——t—e
1e4+00 I EEEE—————.,

le-01

avg rel L2 error of states

1le-02 ‘ ‘ ‘

#delays

Observe only about 50% of all state components
e Linear time-delay terms with stage-wise re-projection
e Reduces error of inferred model by more than one order of magnitude
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NonM: Burgers': Shock formation

n
state
o

time

state
o

0.0
° 0.1 03

0.05
04 03
space . space

(a) ground truth (full model) (b) intrusive model reduction

Modify coefficients of Burgers’ equation to obtain solution with shock
e Solutions with shocks are challenging to reduce with model reduction
e Here, reduced model from intrusive model reduction has oscillatory error
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NonM: Burgers’': Capturing shock position

0.07

0.06 +
0.05

shock position

0.01 +

0.04 -
0.03 -
0.02 |

. T . T T
— intrusive model reduction

—— . —
intrusive model reduction ——

error in shock position
o
[os}
o

0.05 0.1 0.15
time [s]

0.2 0.25 0 10 20 30 40 50 60
dimension of reduced model

Learn time-delay terms stage-wise with (re-)re-projection

e Learn linear time-delay corrections

e In this example, time delay of order 4 sufficient to capture shock

e Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]
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Conclusions

high-dim.
model

1
reduced error -
PDE | —8 3% s '
model control assemble

high-dim.
operators

high-dim,
trajectories

construct

project

high-dim.
trajectories

our approach:
pre-asymptotically
guaranteed

lo .
—
model

Learning dynamical-system models from data with error guarantees

(Markovian)
reduced model

Non-Markovian
reduced model

Operator inference exactly recovers reduced models from data

Generating the right data is key to learning reduced models in our case

Pre-asymptotic guarantees (finite data) under certain conditions
e Going beyond reduced models by learning non-Markovian corrections
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