
Sampling low-dimensional Markovian dynamics
for learning certified reduced models from data

Wayne Isaac Tan Uy and Benjamin Peherstorfer
Courant Institute of Mathematical Sciences, New York University

February 2020



Learning dynamical-system models from data

PDE reduced
model

error
control

data low-dim.
model ?

Learn low-dimensional model from data of dynamical system

• Interpretable
• System & control theory

• Fast predictions
• Guarantees for finite data

Learn reduced model from trajectories of high-dim. system
• Recover exactly and pre-asymptotically reduced models from data
• Then build on rich theory of model reduction to establish error control

2 / 41



Recovering reduced models from data

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

Learn low-dimensional model from data of dynamical system

• Interpretable
• System & control theory

• Fast predictions
• Guarantees for finite data

Learn reduced model from trajectories of high-dim. system
• Recover exactly and pre-asymptotically reduced models from data
• Then build on rich theory of model reduction to establish error control

2 / 41



Intro: Polynomial nonlinear terms
Models with polynomial nonlinear terms

d
dt

x(t;µ) =f (x(t;µ),u(t);µ)

=
∑̀
i=1

Ai (µ)x i (t;µ) + B(µ)u(t)

• Polynomial degree ` ∈ N
• Kronecker product x i (t;µ) =

⊗i
j=1 x(t;µ)

• Operators Ai (µ) ∈ RN×N i

for i = 1, . . . , `
• Input operator B(µ) ∈ RN×p

Lifting and transformations
• Lift general nonlinear systems to quadratic-bilinear ones [Gu, 2011], [Benner,

Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox,

2019], [Qian, Kramer, P., Willcox, 2019]

• Koopman lifts nonlinear systems to infinite linear systems [Rowley et al, 2009],

[Schmid, 2010]

3 / 41



Intro: Beyond polynomial terms (nonintrusive)

4 / 41



Intro: Beyond polynomial terms (nonintrusive)

4 / 41



Intro: Beyond polynomial terms (nonintrusive)

4 / 41



Intro: Parametrized systems
Consider time-invariant system with polynomial nonlinear terms

d
dt

x(t;µ) =f (x(t;µ),u(t);µ)

=
∑̀
i=1

Ai (µ)x i (t;µ) + B(µ)u(t)

Parameters
• Infer models f̂ (·, ·;µ1), . . . , f̂ (·, ·;µM) at parameters

µ1, . . . ,µM ∈ D
• For new µ ∈ D, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

f̂ (µ1), . . . , f̂ (µM)

Trajectories

X = [x1, . . . , xK ] ∈ RN×K

U = [u1, . . . ,uK ] ∈ Rp×K

5 / 41



Intro: Parametrized systems
Consider time-invariant system with polynomial nonlinear terms

d
dt

x(t) =f (x(t),u(t))

=
∑̀
i=1

Aix i (t) + Bu(t)

Parameters
• Infer models f̂ (·, ·;µ1), . . . , f̂ (·, ·;µM) at parameters

µ1, . . . ,µM ∈ D
• For new µ ∈ D, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

f̂ (µ1), . . . , f̂ (µM)

Trajectories

X = [x1, . . . , xK ] ∈ RN×K

U = [u1, . . . ,uK ] ∈ Rp×K

5 / 41



Intro: Parametrized systems
Consider time-invariant system with polynomial nonlinear terms

xk+1 =f (xk ,uk)

=
∑̀
i=1

Aix i
k + Buk , k = 0, . . . ,K − 1

Parameters
• Infer models f̂ (·, ·;µ1), . . . , f̂ (·, ·;µM) at parameters

µ1, . . . ,µM ∈ D
• For new µ ∈ D, interpolate operators of [Amsallem et al., 2008], [Degroote et al., 2010]

f̂ (µ1), . . . , f̂ (µM)

Trajectories

X = [x1, . . . , xK ] ∈ RN×K

U = [u1, . . . ,uK ] ∈ Rp×K

5 / 41



Intro: Classical (intrusive) model reduction
Given full model f , construct reduced f̃ via projection

1. Construct n-dim. basis V = [v1, . . . , vn] ∈ RN×n

• Proper orthogonal decomposition (POD)
• Interpolatory model reduction
• Reduced basis method (RBM), ... RN

x1

x2

xK

2. Project full-model operators A1, . . . ,A`,B onto reduced space, e.g.,

Ãi = V T

N×N i︷︸︸︷
Ai (V ⊗ · · · ⊗ V )︸ ︷︷ ︸

n×ni

, B̃ = V T

N×p︷︸︸︷
B︸ ︷︷ ︸

n×p

3. Construct reduced model

x̃k+1 = f̃ (x̃k ,uk) =
∑̀
i=1

Ãi x̃ i
k + B̃uk , k = 0, . . . ,K − 1

with n� N and ‖V x̃k − xk‖ small in appropriate norm
[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

6 / 41



Intro: Classical (intrusive) model reduction
Given full model f , construct reduced f̃ via projection

1. Construct n-dim. basis V = [v1, . . . , vn] ∈ RN×n

• Proper orthogonal decomposition (POD)
• Interpolatory model reduction
• Reduced basis method (RBM), ... RN

x1

x2

xK

2. Project full-model operators A1, . . . ,A`,B onto reduced space, e.g.,

Ãi = V T

N×N i︷︸︸︷
Ai (V ⊗ · · · ⊗ V )︸ ︷︷ ︸

n×ni

, B̃ = V T

N×p︷︸︸︷
B︸ ︷︷ ︸

n×p

3. Construct reduced model

x̃k+1 = f̃ (x̃k ,uk) =
∑̀
i=1

Ãi x̃ i
k + B̃uk , k = 0, . . . ,K − 1

with n� N and ‖V x̃k − xk‖ small in appropriate norm
[Rozza, Huynh, Patera, 2007], [Benner, Gugercin, Willcox, 2015]

6 / 41



Our approach: Learn reduced models from data

Sample (gray-box) high-dimensional system with inputs

U =
[
u0 · · · uK−1

]
to obtain trajectory

X =

 | | |
x0 x1 · · · xK

| | |



Learn model f̂ from data U and X

x̂k+1 =f̂ (x̂k ,uk)

=
∑̀
i=1

Âix i
k + B̂uk , k = 0, . . . ,K − 1

initial condition
inputs

Exk+1 = Axk +Buk

yk = Cxk

gray-box
dynamical
system

state trajectory

7 / 41



Intro: Literature overview
System identification [Ljung, 1987], [Viberg, 1995], [Kramer, Gugercin, 2016], ...

Learning in frequency domain [Antoulas, Anderson, 1986], [Lefteriu, Antoulas, 2010],

[Antoulas, 2016], [Gustavsen, Semlyen, 1999], [Drmac, Gugercin, Beattie, 2015], [Antoulas, Gosea,

Ionita, 2016], [Gosea, Antoulas, 2018], [Benner, Goyal, Van Dooren, 2019], ...

Learning from time-domain data (output and state trajectories)
• Time series analysis (V)AR models, [Box et al., 2015], [Aicher et al., 2018, 2019], ...

• Learning models with dynamic mode decomposition [Schmid et al., 2008],

[Rowley et al., 2009], [Proctor, Brunton, Kutz, 2016], [Benner, Himpe, Mitchell, 2018], ...

• Sparse identification [Brunton, Proctor, Kutz, 2016], [Schaeffer et al, 2017, 2018], ...

• Deep networks [Raissi, Perdikaris, Karniadakis, 2017ab], [Qin, Wu, Xiu, 2019], ...

• Bounds for LTI systems [Campi et al, 2002], [Vidyasagar et al, 2008], ...

Correction and data-driven closure modeling
• Closure modeling [Chorin, Stinis, 2006], [Oliver, Moser, 2011], [Parish, Duraisamy,

2015], [Iliescu et al, 2018, 2019], ...

• Higher order dynamic mode decomposition [Le Clainche and Vega, 2017],

[Champion et al., 2018]
8 / 41



Outline

• Introduction and motivation

• Operator inference for learning low-dimensional models

• Sampling Markovian data for recovering reduced models

• Rigorous and pre-asymptotic error estimators

• Learning time delays to go beyond Markovian models

• Conclusions

9 / 41



OpInf: Fitting low-dim model to trajectories
1. Construct POD (PCA) basis of dimension n� N

V = [v1, · · · , vn] ∈ RN×n

2. Project state trajectory onto the reduced space

X̆ = V TX = [x̆1, · · · , x̆K ] ∈ Rn×K

3. Find operators Â1, . . . , Â`, B̂ such that

x̆k+1 ≈
∑̀
i=1

Âi x̆ i
k + B̂uk , k = 0, · · · ,K − 1

by minimizing the residual in Euclidean norm

min
Â1,...,Â`,B̂

K−1∑
k=0

∥∥∥∥∥x̆k+1 −
∑̀
i=1

Âi x̆ i
k − B̂uk

∥∥∥∥∥
2

2

[P., Willcox, Data driven operator inference for nonintrusive projection-based model reduction; Computer Methods in
Applied Mechanics and Engineering, 306:196-215, 2016]

10 / 41



OpInf: Learning from projected trajectory
Fitting model to projected states

• We fit model to projected trajectory

X̆ = V TX

• Would need X̃ = [x̃1, . . . , x̃K ] because

K−1∑
k=0

∥∥∥∥∥x̃k+1 −
∑̀
i=1

Ãi x̃ i
k − B̃uk

∥∥∥∥∥
2

2

= 0

• However, trajectory X̃ unavailable
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 10 20 30 40 50 60 70 80 90 100

2-
no

rm
of

st
at

es

time step k

projected
int. model reduction

OpInf (w/out re-proj)

Thus, ‖f̂ − f̃ ‖ small critically depends on ‖X̆ − X̃‖ being small
• Increase dimension n of reduced space to decrease ‖X̆ − X̃‖

⇒ increases degrees of freedom in OpInf ⇒ ill-conditioned
• Decrease dimension n to keep number of degrees of freedom low

⇒ difference ‖X̆ − X̃‖ increases
11 / 41



OpInf: Closure of linear system
Consider autonomous linear system

xk+1 = Axk , x0 ∈ RN , k = 0, . . . ,K − 1

• Split RN into V = span(V ) and V⊥ = span(V⊥)

RN = V ⊕ V⊥

• Split state
xk = V V Txk︸ ︷︷ ︸

x‖
k

+V⊥V T
⊥xk︸ ︷︷ ︸
x⊥
kRepresent system as

x‖k+1 =A11x
‖
k + A12x⊥k

x⊥k+1 =A21x
‖
k + A22x⊥k

with operators

A11 = V TAV︸ ︷︷ ︸
=Ã

, A12 = V TAV⊥ ,A21 = V T
⊥AV , A22 = V T

⊥AV⊥

[Givon, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006] [Parish, Duraisamy, 2017]

12 / 41



OpInf: Closure term as a non-Markovian term
Projected trajectory X̆ mixes dynamics in V and V⊥

V Txk+1 = x̆k+1 = x‖k+1 = A11x
‖
k + A12x⊥k

Mori-Zwanzig formalism gives [Givon, Kupferman, Stuart, 2004], [Chorin, Stinis, 2006]

V Txk+1 = x‖k+1 =A11x
‖
k + A12x⊥k

=A11x
‖
k +

k−1∑
j=1

Ak−j−1
22 A21x

‖
j + A12Ak−1

22 x⊥0

Non-Markovian (memory) term models unobserved dynamics

0.00e+00

5.00e-04

1.00e-03

1.50e-03

2.00e-03

2.50e-03

0 200 400 600 800 1000

no
rm

of
cl

os
ur

e
te

rm

time step 13 / 41



Outline

• Introduction and motivation

• Operator inference for learning low-dimensional models

• Sampling Markovian data for recovering reduced models

• Rigorous and pre-asymptotic error estimators

• Learning time delays to go beyond Markovian models

• Conclusions

14 / 41



ReProj: Handling non-Markovian dynamics

Ignore non-Markovian dynamics
• Have significant impact on model accuracy (much more than in classical

model reduction?)
• Guarantees on models?

Fit models with different forms to capture non-Markovian dynamics
• Length of memory (support of kernel) typically unknown
• Time-delay embedding increase dimension of reduced states, which is

what we want to reduce
• Model reduction (theory) mostly considers Markovian reduced models

Our approach: Control length of memory when sampling trajectories
• Set length of memory to 0 for sampling Markovian dynamics
• Increase length of memory in a controlled way (lag is known)
• Modify the sampling scheme, instead of learning step
• Emphasizes importance of generating the “right” data

15 / 41



ReProj: Avoiding closure

Mori-Zwanzig formalism explains projected trajectory as

V Txk+1 = x‖k+1 = A11x
‖
k︸ ︷︷ ︸

reduced model

+
k−1∑
j=1

Ak−j−1
22 A21x

‖
j︸ ︷︷ ︸

memory

+A12Ak−1
22 x⊥0︸ ︷︷ ︸

noise

Sample Markovian dynamics by setting memory and noise to 0
• Set x0 ∈ V, then noise is 0
• Take a single time step, then memory term is 0

Sample trajectory by re-projecting state of previous time step onto V

Establishes “independence”

16 / 41



ReProj: Sampling with re-projection
Data sampling: Cancel non-Markovian terms via re-projection
1. Project initial condition x0 onto V

x̄0 = V Tx0

2. Query high-dim. system for a single time step with V x̄0

x1 = f (V x̄0,u0)

3. Re-project to obtain x̄1 = V Tx1
4. Query high-dim. system with re-projected initial condition V x̄1

x2 = f (V x̄1,u1)

5. Repeat until end of time-stepping loop

Obtain trajectories

X̄ = [x̄0, . . . , x̄K−1] , Ȳ = [x̄1, . . . , x̄K ] , U = [u0, . . . ,uK−1]

[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with
operator inference. arXiv:1908.11233, 2019.]

17 / 41



ReProj: Operator inference with re-projection
Operator inference with re-projected trajectories

min
Â1,...,Â`,B̂

∥∥∥∥∥Ȳ − ∑̀
i=1

Âi X̄
i − B̂U

∥∥∥∥∥
2

F

Theorem (Simplified) Consider time-discrete system with polynomial
nonlinear terms of maximal degree ` and linear input. If K ≥

∑`
i=1 n

i + 2
and matrix [X̄ ,U , X̄ 2

, . . . , X̄ `
] has full rank, then ‖X̄ − X̃‖ = 0 and thus

f̂ = f̃ in the sense

‖Â1 − Ã1‖F = · · · = ‖Â` − Ã`‖F = ‖B̃ − B̂‖F = 0

• Pre-asymptotic guarantees, in contrast to learning from projected data
• Re-projection is a nonintrusive operation
• Requires querying high-dim. system twice
• Initial conditions remain “physically meaningful”

Provides a means to find model form
[P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced models from data with

operator inference. arXiv:1908.11233, 2019.]

18 / 41



ReProj: Queryable systems
Definition: Queryable systems [Uy, P., 2020]

A dynamical system is queryable, if the trajectory
X = [x1, . . . , xK ] with K ≥ 1 can be computed for
initial condition x0 ∈ V and feasible input trajectory
U = [u1, . . . ,uK ].

Details about how trajectories computed unnecessary
• Discretization (FEM, FD, FV, etc)
• Time-stepping scheme
• Time-step size
• In particular, neither explicit nor implicit access to

operators required

Insufficient to have only data available
• Need to query system at re-projected states
• Similar requirement as for active learning

initial condition
inputs

Exk+1 = Axk +Buk

yk = Cxk

gray-box
dynamical
system

state trajectory

19 / 41



ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 1000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
20 / 41



ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 3000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
20 / 41



ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 5000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
20 / 41



ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 7000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
20 / 41



ReProj: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 9000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
20 / 41



ReProj: Burgers’: Operator inference

1e-03

1e-02

1e-01

1e+00

1e+01

2 4 6 8 10 12 14

av
g
re
le

rr
or

of
st
at
es

(1
)

dimension n

intrusive model reduction

Error of reduced models at test data
• Inferring operators from projected data fails in this example
• Recover reduced model from re-projected data

21 / 41



ReProj: Burgers’: Operator inference

1e-03

1e-02

1e-01

1e+00

1e+01

2 4 6 8 10 12 14

av
g
re
le

rr
or

of
st
at
es

(1
)

dimension n

intrusive model reduction
OpInf, w/out re-proj

Error of reduced models at test data
• Inferring operators from projected data fails in this example
• Recover reduced model from re-projected data

21 / 41



ReProj: Burgers’: Operator inference

1e-03

1e-02

1e-01

1e+00

1e+01

2 4 6 8 10 12 14

av
g
re
le

rr
or

of
st
at
es

(1
)

dimension n

intrusive model reduction
OpInf, w/out re-proj

OpInf, re-proj

Error of reduced models at test data
• Inferring operators from projected data fails in this example
• Recover reduced model from re-projected data

21 / 41



ReProj: Burgers’: Recovery

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

2 4 6 8 10 12 14

di
ffe

re
nc
e
(2
)

dimension n

w/out re-proj
re-proj

The difference between state trajectories
• Model from intrusive model reduction same as OpInf with re-proj.
• Model learned from state trajectories without re-projection differs

22 / 41



ReProj: Chafee: Chafee-Infante example

Chafee-Infante equation

∂

∂t
x(ω, t) + x3(ω, t)− ∂2

∂ω2 x(ω, t)− x(ω, t) = 0

• Boundary conditions as in [Benner et al., 2018]

• Spatial domain ω ∈ [0, 1]

• Time domain t ∈ [0, 10]

• Forward Euler with δt = 10−4

• Cubic nonlinear term 0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 2 4 6 8 10

ou
tp

ut

time [s]
Operator inference

• Infer operators from single trajectory corresponding to random inputs
• Test inferred model on oscillatory input

23 / 41



ReProj: Chafee: Recovery

1e-04

1e-03

1e-02

1e-01

1e+00

2 4 6 8 10 12

te
st

er
ro
r
(3
)

dimension n

intrusive model reduction
OpInf, w/out re-proj
OpInf, re-proj

Error of reduced models on test parameters
• Projected data leads to unstable inferred model
• Inference from data with re-projection shows stabler behavior

24 / 41



Outline

• Introduction and motivation

• Operator inference for learning low-dimensional models

• Sampling Markovian data for recovering reduced models

• Rigorous and pre-asymptotic error estimators

• Learning time delays to go beyond Markovian models

• Conclusions

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

25 / 41



Outline

• Introduction and motivation

• Operator inference for learning low-dimensional models

• Sampling Markovian data for recovering reduced models

• Rigorous and pre-asymptotic error estimators

• Learning time delays to go beyond Markovian models

• Conclusions

25 / 41



ErrEst: Error estimation for learned models
Assumptions∗: Symmetric asymptotically stable linear system

• If not symmetric, then need to assume ‖A1‖ ≤ 1 (for now...)
• Derive reduced model with operator inference and re-projection
• Requires full residual of reduced-model states in training phase

Error estimation based on [Haasdonk, Ohlberger, 2009]
• Residual at time step k

r k = A1V x̂k + Buk − V x̂k+1

• Bound on state error if initial condition in span{V }

‖xk − V x̂k‖2 ≤ C1

(
k−1∑
i=1

‖r k‖2

)
• Offline/online splitting of computing residual norm ‖r k‖2

‖r k‖22 =x̂T
k V TAT

1 A1V︸ ︷︷ ︸
M1

x̂k + uk BTB︸ ︷︷ ︸
M2

uk + x̂k+1V TV x̂k+1

+ 2uTk BTA1V︸ ︷︷ ︸
M3

x̂k − 2x̂T
k+1Â1x̂k+1 − 2x̂k+1B̂uk

26 / 41



ErrEst: Learning error operators from data
From [Haasdonk, Ohlberger, 2009] have

‖r k‖22 =x̂T
k V TAT

1 A1V︸ ︷︷ ︸
M1

x̂k + uk BTB︸ ︷︷ ︸
M2

uk + x̂k+1V TV x̂k+1

+ 2uTk BTA1V︸ ︷︷ ︸
M3

x̂k − 2x̂T
k+1Â1x̂k+1 − 2x̂k+1B̂uk

Query system at training inputs to compute residual trajectories

R =

 | | |
r1 r2 . . . rK
| | |


Learn quantities M1,M2,M3 via operator inference

• Fit error operators M1,M2,M3 to residual trajectories
• Bound constant C1 and constants for output error

Obtain certified reduced models from data alone

[Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems governed by linear parabolic partial
differential equations with control inputs, in preparation, 2020]

27 / 41



ErrEst: Convection-diffusion in a pipe
Governed by parabolic PDE

∂x

∂t
= ∆x − (1, 1) · ∇x , in Ω

x = 0, Γ\{Ei}5i=1

∇x · n = gi (t), in Ei

• Discretize with finite elements
• Degrees of freedom N = 1121
• Forward Euler method δt = 10−5

• End time is T = 0.5

Input signals
• Training signal is sinusoidal
• Test signal is exponentially decaying

sinusoidal with different frequency than
training

0 0.5 1
-0.1

0

0.1

0.2

0.3

28 / 41



ErrEst: Recovering reduced models from data

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0 2 4 6 8 10 12 14 16 18

av
g
re
lL

2
er
ro
r
of

st
at
es

basis dimension

intrusive
OpInf, re-proj

Recover reduced models from data
• Error averaged over time
• Recover reduced model up to numerical errors

29 / 41



ErrEst: Error bounds

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0 2 4 6 8 10 12 14 16 18

re
l.
av
e.

st
at
e
er
r.

ov
er

tim
e

basis dimension

OpInf, err
OpInf, bound

intrusive, bound

Learn certified reduced model from data alone
• Train with sinusoidal and test with exponential input
• Infer quantities from residual of full model (offline/training)
• Estimate error for test inputs

30 / 41



Outline

• Introduction and motivation

• Operator inference for learning low-dimensional models

• Sampling Markovian data for recovering reduced models

• Rigorous and pre-asymptotic error estimators

• Learning time delays to go beyond Markovian models

• Conclusions

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

31 / 41



Outline

• Introduction and motivation

• Operator inference for learning low-dimensional models

• Sampling Markovian data for recovering reduced models

• Rigorous and pre-asymptotic error estimators

• Learning time delays to go beyond Markovian models

• Conclusions

high-dim.
trajectories

reduced space

construct

(Markovian)
reduced model

Non-Markovian
reduced model

project

high-dim.
model

high-dim.
operators

assemble

high-dim.
trajectories

reduced space

construct

infer

31 / 41



NonM: Non-Markovian reduced models

high-dim.
trajectories

reduced space

construct

(Markovian)
reduced model

Non-Markovian
reduced model

project

high-dim.
model

high-dim.
operators

assemble

high-dim.
trajectories

reduced space

construct

infer

Learning non-Markovian low-dim. models in model reduction
• (Full model is non-Markovian [Schulze, Unger, Beattie, Gugercin, 2018])
• Closure error is high and needs to be corrected (steep gradients, shocks)
• Only partially observed state trajectory available

32 / 41



NonM: Learning non-Markovian reduced models

With re-projection, exactly learn Markovian reduced model

x̃k+1 =
∑̀
i=1

Ãi x̃ i
k + B̃uk

However, loose dynamics modeled by non-Markovian terms

x̆k+1 =
∑̀
i=1

Ãi x̆ i
k + B̃uk +

k−1∑
i=1

∆i (x̆k−1, . . . , x̆k−i+1,uk , . . . ,uk−i+1) + 0

Learn unresolved dynamics via approximate non-Markovian terms

x̂k+1 =
∑̀
i=1

Âi x̂ i
k + B̂uk +

k−1∑
i=1

∆̂
θi

i (x̂k−1, . . . , x̂k−i+1,uk , . . . ,uk−i+1)

• Parametrization θi ∈ Θ for i = 0, . . . ,K − 1
• Non-Markovian models extensively used in statistics but less so in MOR

33 / 41



NonM: Sampling with stage-wise re-projection
Learning model operators and non-Markovian terms at the same

⇒ Dynamics mixed, same issues as learning from projected states

Build on re-projection to learn non-Markovian terms stage-wise
• Sample trajectories of length r + 1 with re-projection

X̄ (0)
, . . . , X̄ (K−1) ∈ Rn×r+1

• Infer Markovian reduced model f̂ 1 from one-step trajectories

X̄ (i)
1 = [x̄ (i)

0 , x̄
(i)
1 ] , i = 0, . . . ,K − 1

• Simulate f̂ 1 to obtain

X̂
(i)

2 = [x̂ (i)
0 , x̂

(i)
1 , x̂

(i)
2 ] , i = 0, . . . ,K − 1

• Fit parameter θ1 of non-Markovian term ∆̂
θ1
1 to difference

min
θ1∈Θ

K−1∑
i=0

‖x̄ (i)
2 − x̂ (i)

2 − ∆̂
(θ1)

1 (x̄ (i)
0 ,u i )‖22

• Repeat this r times to learn f̂ r with lag r
34 / 41



NonM: Learning non-Markovian terms

Parametrization of non-Markovian terms
• Set θi = [D i ,E i ] with D i ∈ Rn×n and E i ∈ Rn×p

• Non-Markovian term is

∆̂
(θi )

i (x̂k−1, . . . , x̂k−i+1,uk , . . . ,uk−i+1) = D i x̂k−i+1 + E iuk−i+1

• Other parametrizations with higher-order terms and neural networks

Choosing maximal lag
• Assumption (observation) is that

non-Markovian term of system
has small support

• Need to go back in time only a few steps
• Lag r can be chosen small 0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

200 400 600 800 1000

no
n-

M
ar

ko
vi

an
te

rm

time steps

35 / 41



NonM: Learning from partially observed states

Partially observed state trajectories
• Unknown selection operator
S ∈ {0, 1}Ns×N with Ns < N and

zk = Sxk

• Learn models from trajectory
Z = [z0, . . . , zK−1] instead
of X = [x0, . . . , xK−1]

• Apply POD (PCA) to Z to find basis
matrix V of subspace V of RNs

xi−1 xi xi+1

zi−1 zi zi+1

high-dimensional
states

partially observed
states

Non-Markovian terms to compensate unobserved state components
• Mori-Zwanzig formalism applies
• Non-Markovian terms compensate unobserved components

36 / 41



NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 1000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
37 / 41



NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 3000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
37 / 41



NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 5000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
37 / 41



NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 7000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
37 / 41



NonM: Burgers’: Burgers’ example
Viscous Burgers’ equation

∂

∂t
x(ω, t;µ) + x(ω, t;µ)

∂

∂ω
x(ω, t;µ)− µ ∂2

∂ω2 x(ω, t;µ) = 0

• Spatial, time, and parameter domain

ω ∈ [0, 1] , t ∈ [0, 1] , µ ∈ [0.1, 1]

• Dirichlet boundary conditions

x(0, t;µ) = −x(1, t;µ) = u(t)

• Discretize with forward Euler
• Time step size is δt = 10−4

time step 9000

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.2 0.4 0.6 0.8 1

st
at
e

spatial domain

Operator inference
• Training data are 2 trajectories with random inputs
• Infer operators for 10 equidistant parameters in [0.1, 1]

• Interpolate inferred operators at 7 test parameters and predict
37 / 41



NonM: Burgers’: Partial observations

1e-02

1e-01

1e+00

0 5 10 15 20

av
g

re
lL

2
er

ro
r

of
st

at
es

#delays

intrusive model reduction
projection

inferred model

Observe only about 50% of all state components
• Linear time-delay terms with stage-wise re-projection
• Reduces error of inferred model by more than one order of magnitude

38 / 41



NonM: Burgers’: Shock formation

(a) ground truth (full model) (b) intrusive model reduction

Modify coefficients of Burgers’ equation to obtain solution with shock
• Solutions with shocks are challenging to reduce with model reduction
• Here, reduced model from intrusive model reduction has oscillatory error

39 / 41



NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model reduction

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model reduction

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

40 / 41



NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model reduction
OpInf, 0 delays

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model reduction
OpInf, 0 delays

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

40 / 41



NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model reduction
OpInf, 0 delays
OpInf, 4 delays

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model reduction
OpInf, 0 delays
OpInf, 4 delays

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

40 / 41



NonM: Burgers’: Capturing shock position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2 0.25

sh
oc
k
po

sit
io
n

time [s]

intrusive model reduction
OpInf, 0 delays
OpInf, 4 delays
OpInf, 8 delays

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

er
ro
r
in

sh
oc
k
po

sit
io
n

dimension of reduced model

intrusive model reduction
OpInf, 0 delays
OpInf, 4 delays
OpInf, 8 delays

Learn time-delay terms stage-wise with (re-)re-projection
• Learn linear time-delay corrections
• In this example, time delay of order 4 sufficient to capture shock
• Higher-order time-delay terms learned in, e.g., [Pan, Duraisamy, 2018]

40 / 41



Conclusions

PDE reduced
model

error
control

data low-dim.
model ?

our approach:
pre-asymptotically
guaranteed

high-dim.
trajectories

reduced space

construct

(Markovian)
reduced model

Non-Markovian
reduced model

project

high-dim.
model

high-dim.
operators

assemble

high-dim.
trajectories

reduced space

construct

infer

Learning dynamical-system models from data with error guarantees
• Operator inference exactly recovers reduced models from data
• Generating the right data is key to learning reduced models in our case
• Pre-asymptotic guarantees (finite data) under certain conditions
• Going beyond reduced models by learning non-Markovian corrections

References: https://cims.nyu.edu/∼pehersto
• Uy, P., Pre-asymptotic error bounds for low-dimensional models learned from systems

governed by linear parabolic partial differential equations with control inputs, in preparation,
2020.

• P., Sampling low-dimensional Markovian dynamics for pre-asymptotically recovering reduced
models from data with operator inference. arXiv:1908.11233, 2019.

• P., Willcox, Data-driven operator inference for nonintrusive projection-based model reduction.
Computer Methods in Applied Mechanics and Engineering, 306:196-215, 2016.

41 / 41




